Outside the (Shoe) Box Internet of Things Thinking!

Posted on 30th March 2015 in design, Internet of Things, retail, strategy, wearables

Could someone please forward this to Carrie Bradshaw? I don’t think she reads this blog, but she’d definitely be interested!

I’ve got to confess that I’m usually oblivious to the world of fashion — or appalled by it (there’s a current ad by Gucci in one of my wife’s magazines that frankly scares me: not sure which looks more weird: the emaciated, heavily-made-up model or the dress!), but this one caught my eye as a way women can have a more versatile wardrobe that takes up less space and saves them money!  Neat, huh?

Equally important, it may be the precursor of a wide range of mass-customized Internet of Things devices of all types that are more personal, create new revenue streams, and provide valuable feedback to the manufacturer on customer tastes.

Ishuu, a Lithuanian startup, is creating a new line of très stylish women’s shoes, Volvorii, that include a strip of e-ink material (similar to a Kindle screen) that can be customized by the owner simply by opening an app on her phone! The requisite electronics are housed in the heels.

As of this writing, the Volvorii Indegogo campaign has raised $34,000 of its $50,000 target, with 14 days to go. If I didn’t send every spare dollar to Loyola University – Maryland for my son’s tuition, I think I’d drop a few on this one: it really intrigues me!

If Ishuu is smart, I’d suggest that they throw open the API for the shoes, and allow bright young fashion design students to submit new designs for the insert.

As for those IoT-based products that are more personal, create new revenue streams, and provide valuable feedback to the manufacturer on customer tastes, here are a few more exciting examples to get you noodling about how you might redesign your own products to capitalize on this potential:

What I love about this as a consumer is that we will no longer have to make difficult binary choices between products: instead of either/or, it will be this/and this (in the case of the Watch and these shoes, I love that there will be so many choices that you’ll be able to change your choice on the fly depending on your mood or other factors.  I’m going to choose toe-tapping Mickey when I’m with my grandchildren, the Utility to keep track of biz during the day, and the Simple for more dignified evening wear.

These fall into my What Can You Do Now That You Couldn’t Do Before category. It’s going to take us a while to ditch our old, more limited mindsets, but the rest will be better for everyone.

comments: Comments Off on Outside the (Shoe) Box Internet of Things Thinking! tags: , , , , , , , ,

Lifting the Veil After the Sale: another IoT “Essential Truth”

Count me among those who believe the Internet of Things will affect every aspect of corporate operations, from manufacturing to customer relations.

Perhaps one of the most dramatic impacts will be on the range of activities that take place after the sale, including maintenance, product liability, product upgrades and customer relations.

In the past, this has been a prime example of the “Collective Blindness” that afflicted us before the IoT, because we basically had no idea what happened with our products once they left the factory floor.

In fact, what little data we did have probably served to distort our impressions of how products were actually used. Because there was no direct way to find out how the products were actually used, negative data was probably given exaggerated weight: we heard negative comments (warrantee claims, returns, liability lawsuits, etc.), loud and clear, but there was no way to find out how the majority of customers who were pleased with their products used them.

That has all changed with the IoT.

Now, we have to think about products  in totally new ways to capitalize on the IoT, and I think this merits another “Essential Truth” about the IoT:

Everything is cyclical.

Think about products — and industrial processes in general — in the old industrial system. Everything was linear: perhaps best exemplified by Henry Ford’s massive River Rouge Complex, the world’s largest integrated factory, and the epitome of integrated production.

Ford River Rouge Complex

“Ford was attempting to control and coordinate all of the necessary resources to produce complete automobiles.  Although Ford’s vision was never completely realized, no one else has come so close, especially on such a large scale.  His vision was certainly a success, one indication of this is the term Fordism, which refers to his style of mass-production, characterized by vertical integration, standardized products and assembly-line production”

At “The Rouge,” raw materials (literally: it had its own coke ovens and foundry!)  flowed in one side, and completed cars flowed out the other, bound for who knows where. Once the cars were in customers’ hands, the company’s contact was limited to whatever knowledge could be gleaned from owners’ visits to dealers’ service departments, irate calls from customers who had problems, and (in later days) safety recalls and/or multi-million dollar class-action lawsuits.

That linear thinking led to a terrible example of the “Collective Blindness” phenomenon that I’ve written about in the past: who knew how customers actually thought about their Model T’s? How did they actually drive them? Were there consistent patterns of performance issues that might not have resulted in major problems, but did irritate customers?

Sure, you could guess, or try to make inferences based on limited data, but no one really knew.

Fast forward to the newest auto manufacturer, Tesla, and its factory in Fremont, California (aside: this massive building — Tesla only uses a portion, used to be the NUMMI factory, where Chevy built Novas and Toyota built Corollas. Loved the perceptual irony: exactly the same American workers built mechanically identical cars [only the sheet metal varied] but the Toyotas commanded much higher prices, because of the perception of “Japanese quality.” LOL. But I digress….).

Tesla doesn’t lose track of its customers once the cars leave the plant.

Tesla assembly line

In fact, as I’ve written before, these “iPhones on wheels” are part of a massive cyclical process, where the cars’ on-board communications constantly send back data to the company about how the cars are actually doing on the road. And, when need be, as I mentioned in that prior post, the company was able to solve a potentially dangerous problem by simply sending out a software patch that was implemented while owners slept, without requiring customer trips to a repair shop!

I imagine that the company’s design engineers also pour over this data to discern patterns that might indicate elements of the physical design to tweak as well.

Of course, what would a blog post by me about IoT paradigm shifts be without a gratuitous reference to General Electric and its Durathon battery plant (aside to GE accounting: where should I send my W-9 and invoice so you can send me massive check for all the free PR I’ve given you? LOL)?

I can’t think of a better example of this switch to cyclical thinking:

  • including sensors into the batteries at the beginning of the production process rather than slapping them on at the end means that the company is actually able to monitor, and fine tune, the manufacturing process to optimize the critical chemical reaction. The same data allows the workers to remove defective batteries from the assembly line, so that every battery that ships works.
  • once in the field (and, remember: these batteries are deployed in incredibly remote areas where it might take days for a repair crew to reach and either service or repair them) the same sensors send back data on how the batteries are functioning. I don’t know about the specifics in the case of these batteries, but GE has actually created new revenue streams with other continuously-monitored devices by selling this data to customers who can use it (because the data is shared on a real-time basis, not just historically) to optimize performance.

Elsewhere, as I’ve mentioned before, General Electric’s William Ruh has said that being able to lift the veil of “Collective Blindness” through feedback from how customers actually use their products has even revolutionized their product design process:

“… G.E. is adopting practices like releasing stripped-down products quickly, monitoring usage and rapidly changing designs depending on how things are used by customers. These approaches follow the ‘lean start-up’ style at many software-intensive Internet companies. “’We’re getting these offerings done in three, six, nine months,’ he (Ruh) said. ‘It used to take three years.’”

Back in the ’90’s, I used to lecture and consult on what I called “Natural Wealth,” a paradigm shift in which we’d find all the inspiration we needed for an information-based economy in a table-top terrarium that embodies billion-year-old  principles of nature:

  • embrace chaos, don’t try to control it. (i.e., use open systems rather than proprietary ones)
  • create symbiosis: balance competition with cooperation (IFTTT.com, where you release your APIs to create synergistic mashups with others).
  • close the loop.

With the IoT, we can finally put that last principle into practice, substituting cyclical processes for linear ones.  At long last, the “systems dynamics” thinking pioneered by Jay Forrester and his disciple, Peter Senge, can become a reality. Here’s a closing tip to make that possible: in addition to SAP’s HANA or other analytics packages, look to systems dynamics software such as isee systems’  iThink to model your processes and transform linear into cyclical ones. Now get going: close the loop!

Why the Internet of Things Will Bring Fundamental Change “What Can You Do Now That You Couldn’t Do Before?”

The great Eric Bonabeau has chiseled it into my consciousness that the test of whether a new technology really brings about fundamental change is to always ask “What can you do now that you couldn’t do before?

Tesla Roadster

That’s certainly the case for the Tesla alternative last winter to a costly, time-consuming, and reputation-staining recall  (dunno: I must have been hiding under a rock at the time to have not heard about it).

In reporting the company’s action, Wired‘s story’s subtitle was “best example yet of the Internet of Things?”

I’d have to agree it was.

Coming at the same time as the godawful Chevy recall that’s still playing out and still dragging down the company, Tesla promptly and decisively response solved another potentially dangerous situation:

 

“‘Not to worry,’ said Tesla, and completed the fix for its 29,222 vehicle owners via software update. What’s more, this wasn’t the first time Tesla has used such updates to enhance the performance of its cars. Last year it changed the suspension settings to give the car more clearance at high speeds, due to issues that had surfaced in certain collisions.”

Think of it: because Tesla has basically converted cars into computers with four wheels, modifying key parts by building in sensors and two-way communications, it has also fundamentally changed its relationship with customers: it can remain in constant contact with them, rather than losing contact between the time the customer drives off the lot and when the customer remembers (hopefully..) to schedule a service appointment, and many modifications that used to require costly and hard-to-install replacement parts now are done with a few lines of code!

Not only can Tesla streamline recalls, but it can even enhance the customer experience after the car is bought: I remember reading somewhere that car companies may start offering customer choice on engine performance: it could offer various software configurations to maximize performance or to maximize fuel savings — and continue to tweak those settings in the future, just as computers get updated operating systems. That’s much like the transformation of many other IoT-enhanced products into services, where the customer may willingly pay more over a long term for a not just a hunk of metal, but also a continuing data stream that will help optimize efficiency and reduce operating costs.

Wired went on to talk about how the engineering/management paradigm shift represented a real change:

  • “In nearly all instances, the main job of the IoT — the reason it ever came to be — is to facilitate removal of non-value add activity from the course of daily life, whether at work or in private. In the case of Tesla, this role is clear. Rather than having the tiresome task of an unplanned trip to the dealer put upon them, Tesla owners can go about their day while the car ‘fixes itself.’
  • Sustainable value – The real challenge for the ‘consumer-facing’ Internet of Things is that applications will always be fighting for a tightly squeezed share of disposable consumer income. The value proposition must provide tangible worth over time. For Tesla, the prospect of getting one’s vehicle fixed without ‘taking it to the shop’ is instantly meaningful for the would-be buyer – and the differentiator only becomes stronger over time as proud new Tesla owners laugh while their friends must continue heading to the dealer to iron out typical bug fixes for a new car. In other words, there is immediate monetary value and technology expands brand differentiation. As for Tesla dealers, they must be delighted to avoid having to make such needling repairs to irritated customers – they can merely enjoy the positive PR halo effect that a paradigm changing event like this creates for the brand – and therefore their businesses.
  • Setting new precedents – Two factors really helped push Tesla’s capability into the news cycle: involvement by NHTSA and the word ‘recall.’ At its issuance, CEO Elon Musk argued that the fix should not technically be a ‘recall’ because the necessary changes did not require customers find time to have the work performed. And, despite Musk’s feather-ruffling remarks over word choice, the stage appears to have been set for bifurcation in the future by the governing bodies. Former NHTSA administrator David Strickland admitted that Musk was ‘partially right’ and that the event could be ‘precedent-setting’ for regulators.”

That’s why I’m convinced that Internet of Things technologies such as sensors and tiny radios may be the easy part of the revolution: the hard part is going to be fundamental management changes that require new thinking and new questions.

What can you do now that you couldn’t do before??

BTW: Musk’s argument that its software upgrade shouldn’t be considered a traditional “recall” meshes nicely with my call for IoT-based “real-time regulation.”  As I wrote, it’s a win-win, because the same data that could be used for enforcement can also be used to enhance the product and its performance:

  • by installing the sensors and monitoring them all the time (typically, only the exceptions to the norm would be reported, to reduce data processing and required attention to the data) the company would be able to optimize production and distribution all the time (see my piece on ‘precision manufacturing’).
  • repair costs would be lower: “predictive maintenance” based on real-time information on equipment’s status is cheaper than emergency repairs. the public interest would be protected, because many situations that have resulted in disasters in the past would instead be avoided, or at least minimized.
  • the cost of regulation would be reduced while its effectiveness would be increased: at present, we must rely on insufficient numbers of inspectors who make infrequent visits: catching a violation is largely a matter of luck. Instead, the inspectors could monitor the real-time data and intervene instantly– hopefully in time to avoid an incident. “
http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management