When Philips’s Hue Bulbs Are Attacked, IoT Security Becomes Even Bigger Issue

OK, what will it take to make security (and privacy) job #1 for the IoT industry?

The recent Mirai DDoS attack should have been enough to get IoT device companies to increase their security and privacy efforts.

Now we hear that the Hue bulbs from Philips, a global electronics and IoT leader that DOES emphasize security and doesn’t cut corners, have been the focus of a potentially devastating attack (um, just wonderin’: how does triggering mass epileptic seizures through your light bulbs grab you?).

Since it’s abundantly clear that the US president-elect would rather cut regulations than add needed ones (just announcing that, for every new regulation, two must be cut), the burden of improving IoT security will lie squarely on the shoulders of the industry itself. BTW:kudos in parting to outgoing FTC Chair Edith Ramirez, who has made intelligent, workable IoT regulations in collaboration with self-help efforts by the industry a priority. Will we be up to the security challenge, or, as I’ve warned before, will security and privacy lapses totally undermine the IoT in its adolescence by losing the public and corporate confidence and trust that is so crucial in this particular industry?

Count me among the dubious.

Here’s what happened in this truly scary episode, which, for the first time, presages making the focus of an IoT hack an entire city, by exploiting what might otherwise be a smart city/smart grid virtue: a large installed base of smart bulbs, all within communication distance of each other. The weapons? An off-the-shelf drone and an USB stick (the same team found that a car will also do nicely as an attack vector). Fortunately, the perpetrators in this case were a group of white-hat hackers from the Weizmann Institute of Science in Israel and Dalhousie University in Canada, who reported it to Philips so they could implement additional protections, which the company did.

Here’s what they wrote about their plan of attack:

“In this paper we describe a new type of threat in which adjacent IoT devices will infect each other with a worm that will spread explosively over large areas in a kind of nuclear chain reaction (my emphasis), provided that the density of compatible IoT devices exceeds a certain critical mass. In particular, we developed and verified such an infection using the popular Philips Hue smart lamps as a platform.

“The worm spreads by jumping directly from one lamp to its neighbors, using only their built-in ZigBee wireless connectivity and their physical proximity. The attack can start by plugging in a single infected bulb anywhere in the city, and then catastrophically spread everywhere within minutes, enabling the attacker to turn all the city lights on or off, permanently brick them, or exploit them in a massive DDOS attack (my emphasis). To demonstrate the risks involved, we use results from percolation theory to estimate the critical mass of installed devices for a typical city such as Paris whose area is about 105 square kilometers: The chain reaction will fizzle if there are fewer than about 15,000 randomly located smart lights in the whole city, but will spread everywhere when the number exceeds this critical mass (which had almost certainly been surpassed already (my emphasis).

“To make such an attack possible, we had to find a way to remotely yank already installed lamps from their current networks, and to perform over-the-air firmware updates. We overcame the first problem by discovering and exploiting a major bug in the implementation of the Touchlink part of the ZigBee Light Link protocol, which is supposed to stop such attempts with a proximity test. To solve the second problem, we developed a new version of a side channel attack to extract the global AES-CCM key that Philips uses to encrypt and authenticate new firmware. We used only readily available equipment costing a few hundred dollars, and managed to find this key without seeing any actual updates. This demonstrates once again how difficult it is to get security right even for a large company that uses standard cryptographic techniques to protect a major product.”

Again, this wasn’t one of those fly-by-night Chinese manufacturers of low-end IoT devices, but Philips, a major, respected, and vigilant corporation.

As for the possible results? It could:

  •  jam WiFi connections
  • disturb the electric grid
  • brick devices making entire critical systems inoperable
  • and, as I mentioned before, cause mass epileptic seizures.

As for the specifics, according to TechHive, the researchers installed Hue bulbs in several offices in an office building in the Israeli city of Beer Sheva. In a nice flair for the ironic, the building housed several computer security firms and the Israeli Computer Emergency Response Team.  They attached the attack kit on the USB stick to a drone, and flew it toward the building from 350 meters away. When they got to the building they took over the bulbs and made them flash the SOS signal in Morse Code.

The researchers”were able to bypass any prohibitions against remote access of the networked light bulbs, and then install malicious firmware. At that point the researchers were able to block further wireless updates, which apparently made the infection irreversible. ‘There is no other method of reprogramming these [infected] devices without full disassemble (which is not feasible). Any old stock would also need to be recalled, as any devices with vulnerable firmware can be infected as soon as power is applied.’”

Worst of all, the attack was against Zigbee, one of the most robust and widely-used IoT protocols, an IoT favorite because Zigbee networks tend to be cheaper and simpler than WiFi or BlueTooth.

The attack points up one of the critical ambiguities about the IoT. On one hand, the fact that it allows networking of devices leads to “network effects,” where each device becomes more valuable because of the synergies with other IoT devices. On the other hand, that same networking and use of open standards means that penetrating one device can mean ultimately penetrating millions and compounding the damage.


I’m hoping against hope that when Trump’s team tries to implement cyber-warfare protections they’ll extend the scope to include the IoT because of this specific threat. If they do, they’ll realize that you can’t just say yes cyber-security and no, regulations. In the messy world of actually governing, rather than issuing categorical dictums, you sometimes have to embrace the messy world of ambiguity.  

What do you think?

 

comments: Comments Off on When Philips’s Hue Bulbs Are Attacked, IoT Security Becomes Even Bigger Issue tags: , , , , , , , ,

Smart Infrastructure Logical Top Priority for IoT

The only issue Clinton and Trump can agree on is the need for massive improvements to the nation’s crumbling infrastructure, especially its roads and bridges. But, please, let’s make it more than concrete and steel.

Let’s make it smart, and let’s make it the top priority for the IoT because of the trickle-down effects it will have on everything else in our economy.

Global economist Jeffrey Sachs stated the case eloquently in a recent Boston Globe op-ed, “Sustainable infrastructure after the Automobile Age,” in which he argued that the infrastructure (including not only highways and bridges but also water systems, waste treatment, and the electric grid) shaped by the automotive age has run its course, and must be replaced by one “in line with new needs, especially climate safety, and new opportunities, especially ubiquitous online information and smart machines.”

I’m currently reading Carlo Ratti and Matthew Claudel’s The City of Tomorrow: Sensors, Networks, and the Future of Urban Life, which makes the same argument: “The answer to urban expansion and diffusion — and the host of social consequences that they bring — may be to optimize, rather than increase, transportation infrastructure.”

The IoT is perfectly suited to the needs of a new information-based infrastructure, especially one which must balance promoting the economy and mobility with drastic reductions in greenhouse gasses (transportation produces approximately a third of the U.S.’s  emissions). It can both improve maintenance (especially for bridges) through built-in sensors that constantly monitor conditions and can give advance warning in time to do less-costly and less-disruptive predictive maintenance, and reduce congestion by providing real-time information on current congestion so that real-time alterations to signals, etc., can be made rather than depending on outmoded fixed-interval stoplights, etc.

Sachs points out that infrastructure spending as a percentage of GDP has fallen since the Reagan years, and that it will require much more spending to bring it up to date.

A good place to look for a model is China.  The country already sports the largest concentration of M2M connections in the world: “74 million connections at the end of 2014, representing almost a third of the global base,” much of that in the form of smart bridges, smart rails, and smart grid, and critical because of the country’s rapid economic growth (Ratti cites a Beijing traffic jam that immobilized cars for an astounding 12 days!). Similarly, the government aims to have 95% of homes equipt with smart meters by next year.The country has used its investment in smart infrastructure to build its overall IoT industry’s ability to compete globally.

Sachs argues for a long-term smart infrastructure initiative:

“I propose that we envision the kind of built environment we want for the next 60 years. With a shared vision of America’s infrastructure goals, actually designing and building the new transport, energy, communications, and water systems will surely require at least a generation, just as the Interstate Highway System did a half-century ago.”

He says we need a plan based on three priorities to cope with our current national and global challenges:

“We should seek an infrastructure that abides by the triple bottom line of sustainable development. That is, the networks of roads, power, water, and communications should support economic prosperity, social fairness, and environmental sustainability. The triple bottom line will in turn push us to adopt three guiding principles.

First, the infrastructure should be “smart,” deploying state-of-the-art information and communications technologies and new nanotechnologies to achieve a high efficiency of resource use.

Second, the infrastructure should be shared and accessible to all, whether as shared vehicles, open-access broadband in public areas, or shared green spaces in cities.

Third, transport infrastructure should promote public health and environmental safety. The new transport systems should not only shift to electrical vehicles and other zero-emission vehicles, but should also promote much more walking, bicycling, and public transport use. Power generation should shift decisively to zero-carbon primary energy sources such as wind, solar, hydro, and nuclear power. The built environment should be resilient to rising ocean levels, higher temperatures, more intense heat waves, and more extreme storms.”

The IoT, particularly because of its ability to let us share real-time data that in turn can regulate the infrastructure, is ideally suited to this challenge. It’s time for Congress to not only spend on infrastructure but to do so wisely.

The result will be not only the infrastructure we need, but also a more robust IoT industry in general.

 

comments: Comments Off on Smart Infrastructure Logical Top Priority for IoT tags: , , , ,

Why Am I Not Surprised? GE Does It Again As IoT Innovator

POST-SCRIPT : LATE-BREAKING NEWS: GE WILL ANNOUNCE TOMORROW THAT THEY’RE MOVING THEIR WORLD HEADQUARTERS TO BOSTON.  EVEN THOUGH THE HEART OF THE COMPANY’S INDUSTRIAL INTERNET STRATEGY WILL REMAIN ITS SOFTWARE CENTER IN SILICON VALLEY, THIS SHOULD INEVITABLY BOOST BOSTON’S STATURE IN THE IoT: WE’RE ALREADY RANKED 4TH IN THE WORLD.


PROMINENT DISCLAIMER: I AM NOT ON THE GENERAL ELECTRIC PAYROLL, AS AMAZING AS THAT MAY SEEM CONSIDERING ALL THE NICE THINGS I SAY ABOUT THEM.

C by GE smart bulbs

Whether it’s their incredible Durathon battery plant or the 220-ton computer-on-wheels Evolution loco, I don’t think there’s any major company that gets it more about the IoT, or, as they brand it, the Industrial Internet. As I’ve said before, it’s not just IoT products, but also “IoT Thinking” (collaboration, closing the loop, etc.) on their part. So why am I not surprised that they’ve gone back to their roots and come up with the most practical smart bulb so far, the “C by GE” bulbs?

Surely the Wizard of Menlo Park is smiling down on them for this one!

This is not to take away from the pioneering Philips Hue bulbs (16 million colors? You kidding?), or the neat Playbulb ones that double as speakers, but it seems to me these are the ones so far (possible exception, the $15 Cree ones — although I’ve not been happy with short life-span of my earlier Cree LEDs….) but these seem to me to combine some kewl new features that weren’t available before smart bulbs with affordability: a kit of 4 will be priced at $50 if you order online.

So what’s the big deal? Unlike the HUEs and GE’s earlier Link LED, these won’t require linking to a hub to control them: they link to your phone directly, using Bluetooth.

The bulbs will come in two flavors, to start with: a plain-vanilla dimmable one for most rooms of the house, and the spiffy “C Sleeps” for the bedroom, which will allow you to choose three different color hues, including a bright white to energize yourself on waking, a middling one for most of the day, and a yellowish one that research has shown to be more sleep-inducing, for night time (for you wonks, here’s the science).

Equally important, according to C|NET, they’ll also be more affordable than other multi-hue bulbs:

“The C Sleep LEDs won’t be the first color-tunable smart LEDs on the market, but they’ll certainly be some of the most affordable. The Osram Lightify Starter Kit comes with just a single bulb and costs $60, while the Lifx White 800 LED costs $40. With two color-tunable bulbs plus two standard smart bulbs for $50, C by GE definitely looks like the better value. What’s more, GE is promising limited early-bird pricing that will bring the cost of a starter pack down to $40 for those willing to buy in at launch.”

Because it’s Bluetooth controlled you won’t be able to control it from outside the house, so I’m gonna have to stick with my WeMo sockets to make my wife happy, but supposedly it will work with the Apple HomeKit (“Siri, it’s time for bed”) or if you already have a Wink hub.

Once again, Thanks, Jeff Immelt!

PS: $1.92 a yr. in electric costs: they’ll help save the planet as well

 

3 Steps to Make Your City a World Leader in the IoT

I don’t know about you, but, in the face of grim news globally, I’m determined to make this an incredible year of change and growth.

Happy New Year!

I took a longer than normal time off, to pick up our youngest in Hong Kong after a semester abroad in Thailand, then vacation in Bali.

Hong Kong Internet of Things Association

I started the trip with a speech to the Hong Kong Internet of Things Association, in which I laid out my vision of radical change in corporate management and organization made possible by the IoT, away from the increasingly-obsolete hierarchical and linear forms that made perfect sense in an early 20th-century setting when data was hard to gather and share, but doesn’t when the IoT can allow instant sharing of real-time data by all who need it.

But the most interesting issue came up in the following q & a, when someone asked whether Hong Kong could become a global leader in the IoT.

I told them yes, and followed up with an op-ed in today’s South China Morning Post laying out the steps.

I believe the same steps can help your city become an IoT leader, and that this is a case of the-more-the-merrier: the more cities become IoT leaders the quicker widespread innovation and IoT adoption will become, and the more liveable and efficient our cities — the necessary focus of global growth in this century, especially to meet the challenge of global warming — will become.  So here goes!

  1. Create an IoT community.The one in Boston that I founded is now three years old, and numbers almost 2,000 members. My reason for doing it was that I’d run into many people working in the IoT here (Boston is listed as having the 4th largest concentration of IoT headquarters) but they were largely working in isolation, without a forum to bring them together.

    Forming an IoT network is a crucial step, because the IoT is inherently collaborative: as I’ve written many times before, “network effects” make each individual IoT device or service more valuable if they can be combined with others (for example, Apple’s HomeKit now allows someone to simply say “Siri, it’s time for bed,” and that voice command can trigger collaborative action by a variety of devices from different manufacturers, such as turning down the thermostat, locking the front door, and turning off the lights, which makes each of these IoT devices more valuable than they would be in isolation). Equally important, face-to-face contact may spark ideas that even the most talented IoT practitioner wouldn’t have thought of, huddled alone in his or her garret (or kewl cow0rking space…).

    An association that brings together all of your IoT practitioners will create synergistic benefits for all of them.

  2. Embrace the “smart city” vision. 

    This has the biggest potential payoff for your city, whether or not it becomes a big IoT commercial hub.Traditionally, cities have been laggards in technology adoption, but that’s no longer the case, starting in 2008, when I had the extreme privilege of being a consultant to DC CTO Vivek Kundra (who later became the first US CIO, specifically because of his achievements in DC) when he launched the DC Open Data initiative and the Apps [remember, this was 2008: what the heck are these “apps”???] for America contest to design apps to capitalize on this real-time data.  Hundreds of cities worldwide have embraced the concept, and because it stresses that the solutions be open source, cities that are late to the game can quickly benefit by adopting and adapting creative solutions that others have pioneered.

    When the IoT came along, many of these cities and their entrepreneurial residents were quick to realize their real-time data could lead to IoT apps and services that would deal with many of the prime concerns of cities: traffic control, mass transit, electricity, public health, environmental quality, and water and sewage (Credit where credit is due: IBM’s pioneering Smarter Planet service started working with many of the early adopters even before the smart city movement had a name).

    Cities that have launched comprehensive smart city programs, especially Barcelona’s, which includes projects ranging from free wi-fi to health monitoring for seniors to an app to find parking spaces, have realized tangible benefits while cutting operating costs and that will be the case for newcomers as well.

    Sometimes these initiatives tap the collaborative nature of the IoT to produce a public benefit that would be hideously expensive if they were carried out by municipal workers. For example, in Boston the “Street Bump” smartphone app uses the phone’s sensors to detect if the user’s car hits a pothole, then instantly reports the exact location to the city’s Department of Public Works (DPW). In essence, every driver becomes a de facto DPW employee!

  3. Finally,  join in the worldwide “Things Network” movement.As I’ve written before, this will create citywide, free networks for IoT data exchange, in essence turning an entire city into an IoT laboratory for experimentation and mutual benefit.

    This campaign, which was crowdsourced by only 10 technology enthusiasts in Amsterdam last August, successfully created a citywide data network there in less than a month, using 10 $1200 (USD) “LoRaWan gateways.”  LoRanWan is particularly suited to the IoT because it demands little power, has long range (up to 11 km) and low bandwidth. It wouldn’t require passwords, mobile subscription and zero setup costs.

    There are already 27 cities pursuing Things Networks, and the parent organization is making the concept even easier to deploy through a successful Kickstarter campaign last Fall to raise money to build a new LoRaWan gateway that would only cost $200.

    Unlike the full involvement of city government in initiatives such as opening city data bases, a Things Network is best done by volunteers, so that it will not be co-opted by official government agencies or powerful commercial interests: it is most powerful if it’s open to absolutely anyone who wants to try out a smart Internet of Things idea, while also potentially saving the city the cost of administering an expensive program that could instead be run by volunteers at little cost.

So there you have it: 3 practical steps to make your city a world leader in the Internet of Things that will improve urban life and make the city more efficient even if you don’t make the top 10.  Let’s get cracking!

comments: Comments Off on 3 Steps to Make Your City a World Leader in the IoT tags: , , , , , , , , , , , ,

Why Global Warming Must Be IoT Focus for Everyone

Thanksgiving 2015I want to offer you six great reasons — five of them are seated with my wife and me in this photo — why we all should make global warming a primary focus of IoT projects for the foreseeable future.

There simply is no way to sugar-coat the grim news coming out of the Paris climate talks: even with the most dramatic limits that might be negotiated there, scientists warn we will fall short of the limits in temperature rises needed to avoid global devastation for my grandchildren — and yours.

Fortunately, the Internet of Things can and must be the centerpiece of the drastic changes that we will have to make collectively and individually to cope with this challenge:

“Perhaps one of the most ambitious projects that employ big data to study the environment is Microsoft’s Madingley, which is being developed with the intention of creating a simulation of all life on Earth. The project already provides a working simulation of the global carbon cycle, and it is hoped that, eventually, everything from deforestation to animal migration, pollution, and overfishing will be modeled in a real-time “virtual biosphere.” Just a few years ago, the idea of a simulation of the entire planet’s ecosphere would have seemed like ridiculous, pie-in-the-sky thinking. But today it’s something into which one of the world’s biggest companies is pouring serious money.”

Let me leave you with a laundry list of potential IoT uses to reduce global warming compiled by Cisco’s Dr. Rick Huijbregts:

  • Urban mobility “apps” predict how we can move from A to B in a city in the most environmental friendly manner. Real time data is collected from all modes of city transportation.
  • Using solar energy to power IT networks that in turn power heating, cooling and lighting. Consequently, reduce AC/DC conversions and avoid 70% electricity loss.
  • IP­based, and POE (Power of Ethernet) LED lighting in buildings reduced energy by 50% because of LED and another 50% because of control and automation.
  • Sensors (Internet of Things) record environmental highs and lows, as well as energy consumption. Data analytics allow us to respond in real­time and curtail consumption.
  • Real time insight in energy behaviour and consumption can turn into actionable reduction. 10% of energy reduction can be achieved by behavioural change triggered by simple awareness and education.
  • Working from home while being connected as if one were in the office (TelePresence, Cisco Spark, WebEx, just to name a few networked collaboration tools) takes cars off the road.
  • Grid modernization by adding communication networks to the electrical grid to allow for capacity and demand management.
  • Planning, optimizing, and redirecting transportation logistics based on algorithms, real­time weather and traffic data, and streamlined and JIT shipment and delivery schedules.

These are all great challenges and offer the potential for highly profitable IoT solutions.  For the sake of my six grandchildren, let’s get going!

Cree Connected Bulb 1st Truly Affordable IoT Device

Cree Connected LED bulb

Not absolutely certain on this, but I’m pretty sure the new Cree Connected Bulb is an important landmark in the evolution of the consumer Internet of Things — the first really affordable home IoT device.

The bulb, soon to be available at Home Depot and online sources, will be priced at $15, according to a very favorable C|Net review.

When you consider that the average LED bulb will last more than 20 years and uses about 20% of the electricity that an equivalent incandescent does, that’s really a breakthrough — and could make a dent in electrical use (see my post about how the WeMo socket allows me to meet my wife’s desire for lights on when she gets home while I can save electricity) as part of smart grid strategies that’s even more important with the growing concern about global warming.

You’d need a $50 Wink hub, but just do the math:  a HUE kit, with a hub and three 60-watt equivalent bulbs, costs $199, as compared to $95 for the Cree/Wink equivalent. Of course, there is a major difference: the Cree bulb will only be available in white, while the HUE bulb can create 16,000 million (no, that wasn’t a typo!) light combinations from its built-in RBG elements.  That is very cool, but when you think about the gazillion bulbs throughout a typical house, adding additional HUE bulbs at $60 for the RBG ones or $29 for the white “Lux” ones, compared to $15 for the Cree ones, is a big difference that puts it out of reach for most of us. (BTW: Hue does have competition now, with a 10 pack of LIFX bulbs (no hub required) priced at $910).

This is exciting in its own right, but also gets one wondering whether economies of scale and/or new market entrants may mean more affordable alternatives to the $250 Nest thermostat and August deadbolt. If and when that happens, the IoT will really be mainstream, with huge implications for both the economy and home operations!

comments: Comments Off on Cree Connected Bulb 1st Truly Affordable IoT Device tags: , , , ,

Global Warming: The IoT Can Help Fill Some of the Gap Due to Government Inaction

I won’t dwell on politics here, but  97% of scientists agree that global warming is real, and, according to the latest United National report this month, it is worse than ever (according to the NYTimes,

“The gathering risks of climate change are so profound that they could stall or even reverse generations of progress against poverty and hunger if greenhouse emissions continue at a runaway pace, according to a major new United Nations report.”). (my emphasis)

Thus, it should be noted that the chances of significant government action to curb global warming during the next two years have vanished now that Senator James Inhofe will chair the the Senate Environmental Committee (I won’t repeat any of the clap-trap he has said to deny global warming: look it up…).

While probably not enough to combat such a serious challenge, the Internet of Things will help fill the gap, by helping bring about an era of unprecedented precision in use of energy and materials.

Most important, the IoT is a critical component in “smart grid” electrical strategies, which are critical to reducing CO2 emissions.

According to the Environmental Defense Fund, “Because a smart grid can adjust demand to match intermittent wind and solar supplies, it will enable the United States to rely far more heavily on clean, renewable, home-grown energy: cutting foreign oil imports, mitigating the environmental damage done by domestic oil drilling and coal mining, and reducing harmful air pollution. A smart grid will also facilitate the switch to clean electric vehicles, making it possible to “smart charge” them at night when wind power is abundant and cheap, cutting another huge source of damaging air pollution.”

And then there’s generating electricity from conventional resources: GE, as part of its “industrial internet” IoT strategy, says that it will be able to increase its gas turbines’ operating efficiency (which it says generate 25% of the world’s electricity) by at least 1%.

Equally important, as I’ve written before, “precision manufacturing” through the IoT will also reduce not only use of materials, but also energy consumption in manufacturing.

In other important areas, the IoT can also help reduce global warming:

  • Agriculture: conventional farming is also a major contributor to global warming. “Climate-smart” agriculture, by contrast, reduces the inputs, including energy, needed while maximizing yield (Freight Farms, which converts old intermodal shipping containers into self-contained “Leafy Green Machine” urban farming systems, is a great example!).
  • IoT-based schemes to cut traffic congestion.  As The Motley Fool (BTW, they’re big IoT fans of the IoT as a smart investment opportunity) documents, “1.9 billion gallons of fuel is consumed every year from drivers sitting in traffic. That’s 186 million tons of unnecessary CO2 emissions each year just in the U.S. “

The Motley Fool concludes that, combined, a wide range of IoT initiatives can reduce carbon emissions significantly while increasing the economy’s efficiency:

“A recent report by the Carbon War Room estimates that the incorporation of machine-to-machine communication in the energy, transportation, built environment (its fancy term for buildings), and agriculture sectors could reduce global greenhouse gas emissions by 9.1 gigatons of CO2 equivalent annually. That’s 18.2 trillion pounds, or equivalent to eliminating all of the United States’ and India’s total greenhouse gas emissions combined, and more than triple the reductions we can expect with an extremely ambitious alternative energy conversion program.

“Increased communication between everything — engines, appliances, generators, automobiles — allows for instant feedback for more efficient travel routes, optimized fertilizer and water consumption to reduce deforestation, real-time monitoring of electricity consumption and instant feedback to generators, and fully integrated heating, cooling, and lighting systems that can adjust for human occupancy.”

It always amuses me that self-styled political conservatives are frequently the ones who are least concerned with conserving resources. Perhaps the IoT, by making businesses more efficient, and therefore more profitable, may be able to bring political conservatives into the energy efficiency fold!

comments: Comments Off on Global Warming: The IoT Can Help Fill Some of the Gap Due to Government Inaction tags: , , , , , ,

Smart Washing Machine: another example of “just because you can doesn’t mean you should”

When I buy the much-hyped smart refrigerator, you’ll know I’ve officially gone around the bend, and have officially surrendered to IoT hype: it makes sense for those who buy a ton of processed foods with bar codes on them, but I just can’t see the value to those of us who buy a lot of label-less veggies from farmers markets, for example.

In a close second place on my personal list of those IoT devices that violate one of my Essential Truths of the IoT: “just because you can do something doesn’t mean you should” would be a smart washing machine.

As the Washington Post wrote about Whirlpool’s $1,699 “smart” washer,

“Few expected ‘smart’ machines would fly off the shelves. They’re expensive, and Americans don’t typically replace their washers and dryers all that often. But analysts say the problem is bigger than that. Today’s smartest washer and dryer set won’t fold your clothes, erase wrinkles or stop you from mixing reds and whites. It won’t even move a load from one machine to the other. So what’s the point?”

I know there are going to be some false starts in creating IoT-enabled products that really do provide value, and good for Whirlpool for experimenting, but I do wonder whether something we used to call “common sense” is sorely lacking in some companies’ IoT decision-making.

IMHO, it would really be helpful if my washer and dryer could go on late at night to take advantage of utilities’ off-peak pricing as part of their smart grid initiatives (to their credit, as you’ll see from the photo of the companion smart dryer, a smart grid link is part of these appliances)

smart grid button on Whirlpool dryer

. However, I suspect that would be easily possible if the utilities just published APIs so some smart IFTTT user could create a “recipe” that would turn on an utterly-conventional washer that was plugged into a WeMo smart plug (hmm: did a search for that, and found a recipe that would automatically turn off a washer plugged into a WeMo if a Nest alarm detected a fire: nice, but rather low on my list of what I’d want to have done in case of a fire….).

So, yea, smart appliances, but let’s also make sure that one of the questions companies ask before committing to a really expensive initiative is: “do we really need it?”

comments: Comments Off on Smart Washing Machine: another example of “just because you can doesn’t mean you should” tags: , , ,

Internet of Things critical to attack global warming

I haven’t understood for a long time why there isn’t universal support for serious — and creative — measures to reduce global warming.

I first did a speech on the subject in 1996, and suspect it’s because — wrongly — people confuse energy efficiency with sacrifice, when in fact it’s just using creativity and technology to reduce waste and inefficiency. Who, especially those who style themselves as “conservatives,” could be opposed to that (although recent polls show those Tea Party types just won’t look at the facts..)?

At any rate, as far as I’m concerned, debate on this issue and toleration of “deniers” is no longer an option — we must act, and act NOW — because of the reports by two esteemed scientific panels this week that even if we DO act, catastrophic melting of part of the Antarctic may already be irreversible, ultimately raising ocean levels by 10′ — or more:

“A large section of the mighty West Antarctica ice sheet has begun falling apart and its continued melting now appears to be unstoppable, two groups of scientists reported on Monday. If the findings hold up, they suggest that the melting could destabilize neighboring parts of the ice sheet and a rise in sea level of 10 feet or more may be unavoidable in coming centuries.”

(Aside to Senator Rubio: perhaps scuba expeditions around the former Miami may be a big tourist draw after the apocalypse …).

The Internet of Things can and must play a critical role in such a strategy.

The Environmental Defense Fund’s smart grid initiative, especially its demonstration program in Austin, TX, shows the promise for integrated, large scale programs to turn the electricity system into a truly integrated one where customers will be full partners in demand-side management AND in generation, through small-scale, distributed production from sources such as solar and wind.

Smart AC modlet

But each of us can and must act individually to reduce our carbon footprints, which brings me to a neat device from Thinkeco, the SmartA/C “modlet.” It plugs into the wall socket where you plug in your window-mounted A/C unit, then the A/C plugs into the modelet.

You create a schedule to automatically turn your A/C on and off to save energy. The thermostat also senses the room temp and turns your A/C on and off to maintain a temperature around your set point.  And, rather than keep the A/C on all day when you’re at work just so the apartment will be cool when you get home, you can regulate the temperature from the smartphone app, turning it down before you leave the office.

Several utilities, including Con Ed in NYC, now provide the units to their customers, and they can really make a difference: in New York City alone, there are 6.5 million room air conditioners, which account for up to 2,500 megawatts of demand, or 20 percent of peak demand in the city.  What could be better: an apartment that’s cool when you need it, lower utility bills, and a reduction in greenhouse gases?

Or, there’s Automatic, which plugs into your car’s diagnostic port, and, through Bluetooth, sends you “subtle audio clues” (evidently “SLOW DOWN, IDIOT” doesn’t modify behavior) when it senses you’re accelerating or braking too rapidly or speeding. It also compiles a weekly overall score for your driving — the higher the score, the more economically you’re driving. Hopefully, you’ll modify your driving behavior, save gas money, and reduce emissions (Automatic also has some nice additional features, such as automatically notifying emergency officials if you crash).

I’m a grandfather, and I’m sick about the world that we’re leaving our grandchildren. Let’s all resolve, whether through IoT technology or personal habit change, to tread lightly on the earth and reduce our carbon footprint. It’s no longer a choice.

comments: Comments Off on Internet of Things critical to attack global warming tags: , , , , ,

Important step toward open #IoT standards: ZigBee embraces IPv6

Posted on 3rd April 2013 in Internet of Things, open data

Nothing is more dangerous to rapid expansion of the Internet of Things than proprietary standards that would impede free flow of data.

That’s why it’s good news that the ZigBee protocol, one of the longest running standards for in-home automation, has released its third specification for IPv6, which will enable expansion of Internet naming protocols for the foreseeable future, allowing assignment of unique identities to literally trillions of “things.”  The ZigBee Alliance says “it is the  first open standard for an IPv6-based complete wireless mesh networking solution for controlling low-power, low-cost devices.”

The ZigBee specification is particularly important for expansion of the “smart grid,” since so many addressable devices in the home, including smart meters, smart thermostats, and smart appliances use ZigBee for “personal area networks.”

“‘ZigBee offers a significant step forward in the expansion of IP-based control,’ said Mark Grazier, marketing manager and ZigBee board member, Wireless Connectivity Solutions at Texas Instruments. ‘Having low-power, low-cost wireless mesh devices that connect to a variety of smart grid IPv6-based protocols will further expand the Internet of Things.'”

comments: Comments Off on Important step toward open #IoT standards: ZigBee embraces IPv6 tags: , ,
http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management