“All of Us:” THE model for IoT privacy and security!

pardon me in advance:this will be long, but I think the topic merits it!

One of my fav bits of strategic folk wisdom (in fact, a consistent theme in my Data Dynamite book on the open data paradigm shift) is, when you face a new problem, to think of another organization that might have one similar to yours, but which suffers from it to the nth degree (in some cases, even a matter of literal life-or-death!).

That’s on the likelihood that the severity of their situation would have led these organizations to already explore radical and innovative solutions that might guide your and shorten the process. In the case of the IoT, that would include jet turbine manufacturers and off-shore oil rigs, for example.

I raise that point because of the ever-present problem of IoT privacy and security. I’ve consistently criticized many companies’ lack of attention to seriousness and ingenuity, and warned that this could result not only in disaster for these companies, but also the industry in general due to guilt-by-association.

This is even more of an issue since the May roll-out of the EU’s General Data Protection Regulation (GDPR), based on the presumption of an individual right to privacy.

Now, I have exciting confirmation — from the actions of an organization with just such a high-stakes privacy and security challenge — that it is possible to design an imaginative and effective process alerting the public to the high stakes and providing a thorough process to both reassure them and enroll them in the process.

Informed consent at its best!

It’s the NIH-funded All of Us, a bold effort to recruit 1 million or more people of every age, sex, race, home state, and state of health nationwide to speed medical research, especially toward the goal of “personalized medicine.” The researchers hope that, “By taking into account individual differences in lifestyle, environment, and biology, researchers will uncover paths toward delivering precision medicine.”

All of Us should be of great interest to IoT practitioners, starting with the fact that it might just save our own lives by leading to creation of new medicines (hope you’ll join me in signing up!). In addition, it parallels the IoT in allowing unprecedented degrees of precision in individuals’ care, just as the IoT does with manufacturing, operating data, etc.:

“Precision medicine is an approach to disease treatment and prevention that seeks to maximize effectiveness by taking into account individual variability in genes, environment, and lifestyle. Precision medicine seeks to redefine our understanding of disease onset and progression, treatment response, and health outcomes through the more precise measurement of molecular, environmental, and behavioral factors that contribute to health and disease. This understanding will lead to more accurate diagnoses, more rational disease prevention strategies, better treatment selection, and the development of novel therapies. Coincident with advancing the science of medicine is a changing culture of medical practice and medical research that engages individuals as active partners – not just as patients or research subjects. We believe the combination of a highly engaged population and rich biological, health, behavioral, and environmental data will usher in a new and more effective era of American healthcare.” (my emphasis added)


But what really struck me about All of Us’s relevance to IoT is the absolutely critical need to do everything possible to assure the confidentiality of participants’ data, starting with HIPP protections and extending to the fact that it would absolutely destroy public confidence in the program if the data were to be stolen or otherwise compromised.  As Katie Rush, who heads the project’s communications team told me, “We felt it was important for people to have a solid understanding of what participation in the program entails—so that through the consent process, they were fully informed.”

What the All of Us staff designed was, in my estimation (and I’ve been in or around medical communication for forty years), the gold standard for such processes, and a great model for effective IoT informed consent:

  • you can’t ignore it and still participate in the program: you must sign the consent form.
  • you also can’t short-circuit the process: it said at the beginning the process would take 18-30 minutes (to which I said yeah, sure — I was just going to sign the form and get going), and it really did, because you had to do each step or you couldn’t join — the site was designed so no shortcuts were allowed!:
    • first, there’s an easy-to-follow, attractive short animation about that section of the program
    • then you have to answer some basic questions to demonstrate that you understand the implications.
    • then you have to give your consent to that portion of the program
    • the same process is repeated for each component of the program.
  • all of the steps, and all of the key provisions, are explained in clear, simple English, not legalese. To wit:
    • “Personal information, like your name, address, and other things that easily identify participants will be removed from all data.
    • Samples—also without any names on them—are stored in a secure biobank”
    • “We require All of Us Research Program partner organizations to show that they can meet strict data security standards before they may collect, transfer, or store information from participants.
    • We encrypt all participant data. We also remove obvious identifiers from data used for research. This means names, addresses, and other identifying information is separate from the health information.
    • We require researchers seeking access to All of Us Research Program data to first register with the program, take our ethics training, and agree to a code of conduct for responsible data use.
    • We make data available on a secure platform—the All of Us research portal—and track the activity of all researchers who use it.
    • We enlist independent reviewers to check our plans and test our systems on an ongoing basis to make sure we have effective security controls in place, responsive to emerging threats.”

The site emphasizes that everything possible will be done to protect your privacy and anonymity, but it is also frank that there is no way of removing all risk, and your final consent requires acknowledging that you understand those limits:

“We are working with top privacy experts and using highly-advanced security tools to keep your data safe. We have several  steps in place to protect your data. First, the data we collet from you will be stored on=oyters with extra security portection. A special team will have clearance to process and track your data. We will limit who is allowed to see information that could directly identy you, like your name or social security number. In the unlikely event of a data breach, we will notify you. You are our partner, and your privacy will always be our top priority.”

The process is thorough, easy to understand, and assures that those who actually sign up know exactly what’s expected from them, what will be done to protect them, and that they may still have some risk.

Why can’t we expect that all IoT product manufacturers will give us a streamlined version of the same process? 


I will be developing consulting services to advise companies that want to develop common-sense, effective, easy-to-implement IoT privacy and security measures. Write me if you’d like to know more.

Apple Watch 85% Accuracy in Detecting Diabetes May Be Precursor of Early Diagnoses

Permit me to (re-)introduce myself, LOL.

I haven’t posted since the end of October, because I was totally absorbed in writing The Future is Smart, my book about IoT strategy, which will be released in August by AMACOM, the publishing wing of the American Management Association. A major theme of the book is that the IoT lifts what I term the condition of  “Collective Blindness” that used to plague us before the advent of real-time data from sensors and the analytical software to interpret that data. Collective Blindness meant that we were frequently operating in figurative darkness, having to guess about how things worked or didn’t without direct observational data, which meant that we frequently didn’t learn about problems inside things until after the fact, which could mean costly (and sometimes fatal) corrective maintenance was all that was possible.

Those “things” unfortunately included the human body.

Usually the only way to uncover a problem inside our bodies pre-IoT was through costly pre-arranged tests at the doctor’s or a hospital. They could only provide a snapshot in time, documenting your body’s state at that precise moment (when, after all, you might be flat on your back wearing a johnny — not exactly representative of your actual condition as you go about your daily routine!). If you had no complaint warranting such a test, the condition might go undiagnosed until it was significantly worse (remember the contrast between prompt predictive maintenance of a jet turbine and costly emergency repairs when a disaster loomed?).

That’s why the news from Brandon Ballinger, the Google alum who was co-founder of the Cardiogram app (get it! I did! and I joined their Artificial Intelligence-driven Health eHeart Study as well!) is so important. In a clinical study released last week, the research team found that the Apple Watch is 85% accurate in detecting diabetes in those previously diagnosed with the disease. The paper was presented at the AAAI Conference on Artificial Intelligence last week in New Orleans.

Results from heart monitoring with Apple Watch and Cardiogram app

The study analyzed data from 14,000 Apple Watch users, finding that 462 participants through the heart rate sensor, the same type of sensor.

The investigation tested a 2015 finding by our famous local Framingham Heart Study that resting heart rate and heart rate variability significantly predicted incident diabetes and hypertension.

According to TechCrunch,  Ballinger’s team had previously used the Watch “to detect an abnormal heart rhythm with up to a 97 percent accuracy, sleep apnea with a 90 percent accuracy and hypertension with an 82 percent accuracy when paired with Cardiogram’s AI-based algorithm.”

This is important for several reasons.

We’ve read for several years about single-purpose devices that might be able to diagnose diabetes and determine the need for insulin without painful pinpricks, but the Cardiograph research might show that simply harvesting enough data with a multi-purpose fitness device such as the Watch and being able to interpret it creatively with Artificial Intelligence would be enough. That’s the logical next step with the Health eHeart Study.

It reminds me of the example I’ve mentioned several times before of neonatologists from Toronto’s Hospital for Sick Children and IBM data scientists combining to analyze the huge amount of sensor data harvested from preemies’ bassinettes and being able to diagnose a potentially-lethal neonatal sepsis infection a full day before any visible sign of the infection.

Given these two examples, one must ask, how many other health problems might be diagnosed in their earliest stages, which cures are most likely and least expensive, if routine monitoring through devices such as the Apple Watch become commonplace and the results are crunched with AI? In particular, this could be a key part of my SmartAging concept.

Exciting!

 

NB: I work part-time for The Apple Store, but am not privy to any strategy or inside information. These opinions are purely my own as an Apple Watch user.

 

comments: Comments Off on Apple Watch 85% Accuracy in Detecting Diabetes May Be Precursor of Early Diagnoses tags: , , , , , , , ,

iQ handheld ultrasound: another game-changing IoT health device

As the Red Sox’ Joe Castiglione might say, “Can you believe it?” (I should add a few more question marks to underscore exactly how unbelievable this IoT device is).

That’s my reaction to the latest astounding IoT medical device, the iQ handheld ultrasound, which attaches to a smartphone.

I was mesmerized by the headline on a story about the Butterfly iQ: “Doctor says he diagnosed his own cancer with iPhone ultrasound machine.” (spoiler alert: he was operated on to remove the tumor, and is OK).

Then there’s the marketing pitch: “Whole body imaging. Under $2K.” (that’s as opposed to $115,000 for the average conventional machine).

Oh.

The video is a must watch: the doctors seem truly amazed by its versatility and ease-of-use — not to mention it can be accessed instantly in a life-or-death situation. As one is quoted saying, “This blows up the entire ultrasound playing field.”

It won’t be on the market until next year, but the FDA has already approved the iQ for diagnosis in 13 applications.  Even more amazing, due to advanced electronics, it uses a single probe instead of three, and can document conditions from the superficial to deep inside the body. The system fits in a pants pocket and simply attaches to the doctor’s smartphone.

As incredible as the iQ will be in the US, think of how it will probably bring ultrasound to developing nations worldwide for the first time!

Another video discusses the engineering, which reduced the entire bulky ultrasound machine to a far-less costly chip, (including a lot of signal processing and computational power) and capitalizes on technologies developed for consumer electronics. The approach doesn’t just equal the traditional piezioelectric technology, but surpasses it. with power that would cost more than $100,000 with a conventional machine.

In terms of manufacturing, Butterfly can use the same chip machines used to produce consumer goods such as smartphones, and can print nearly 100 ultrasound machines on less than one disk.

I thought instantly of my go-to “what can you do with the IoT that you couldn’t do before” device, the Kardia EKG on the back of my iPhone (I met a woman recently who said her Mass General cardiologist prescribes it for all of his patients). Both are absolute game changers, in terms of ease of access, lower cost, allowing on-the-spot monitoring and even potentially empowering patients (Yet another tool to make my SmartAging concept possible).

Oh, and did I mention that the iQ’s Artificial Intelligence will guide even inexperienced personnel to do high quality imaging within a few seconds?

Bottom line: if you talk to someone who doesn’t believe the IoT’s potential to make incredible changes in every aspect of our lives, just say: iQ. Wow!

comments: Comments Off on iQ handheld ultrasound: another game-changing IoT health device tags: , , , , , , , ,

IoT Saving Lives

Posted on 15th April 2017 in health, Internet of Things, m-health

What can you do now that you couldn’t do before?

That’s a question from my friend and patron Eric Bonabeau that I’ve raised before with regard to the IoT, and it’s a worthwhile counter-weight to focusing on the steady increases in operating efficiency that incremental IoT strategies can bring about (a not-t0o-subtle plug for the webinar that I’ll do on that subject May 2nd with low-code hotshots Mendix.  Register now!). Sure, concentrate your efforts on squeezing every bit of precision you can, but don’t forget that the IoT can also really change everything.

I’m reminded of that by this piece by Kevin Ashton, who coined the “Internet of Things” name when he was working on early RFID projects at MIT.  He writes about a brilliant insight by Prof. Shwetak Patel, a MacArthur Fellow at the University Washington.  He’s a polymath whose IoT creations include  Zensi a residential energy monitoring device a low-power wireless sensor platform company called SNUPI Technologies, and WallyHome, a consumer home sensing product.

Patel was studying COPD (once called emphysema) which causes shortness of breath and coughing. 5% of the world population suffers from it, and 3 million die from COPD yearly. In the US alone it causes 3/4 million hospitalizations and is the 3rd largest cause of death.

To diagnose it, doctors use spirometers, which cost thousands of dollars, to measure air flow in and out of lungs. Most COPD sufferers don’t have access to them. Hmm. What could substitute for the spirometers? Patel realized there were actually billions of devices that could do the job: the microphones in everyone’s phones! His research group created an algorithm that calculates lung health by analyzing the sound of a person blowing into the mic.  The patient just calls a toll-free number and blows into the phone. Computers analyze the data and tell the patient the results within seconds by voice or a text message. The algorithm’s now so sophisticated that it has 95% accuracy on cellphones and landlines alike.

How cool is that?

The same Ashton piece also talks about a more prosaic medical issue that’s still crucial to patients: how to navigate hospitals. A study he cited at Emory Hospital in Atlanta documented that the problem cost them $400,000 a year, or $800 per bed, not to mention the distraction resulting when  busy staff members are interrupted t0 help patients find their way to a lab or doc’s office.

      My Way App

Specifically, the innovation Ashton cited was at my favorite hospital, Boston Children’s, where my youngest spent a lot of time as a baby & I’ve donated blood for 40 years.  Let me tell you, because Children’s is a pastiche of buildings built since 1871, it kinda resembles a rabbit warren, and, as we like to say in these parts, “you can’t get there from here.”  So the hospital now has a “My Way” app that makes it simple to navigate the maze.

The Ashton piece nicely encapsulated the IoT’s potential: from small changes that make current reality easier to literally and figuratively navigate to new innovations that can literally change your life. Sweet!

 

comments: Comments Off on IoT Saving Lives tags: ,

Updating my “SmartAging” device design criteria

Could seniors be the ideal test group for user-friendly consumer IoT devices?

Two years ago I created a series of criteria by which to evaluate IoT devices that seniors might use (N.B., I didn’t really focus on ones specifically designed for seniors, because I have an admitted bias against devices with huge buttons or that look like mid-century period tube radios — it’s been my experience that seniors aren’t crying out to be labeled as “different.”) to improve their quality of life.

The particular emphasis was on what I called “SmartAging,” which synthesizes two aspects of the IoT:

  • Quantified Self health devices to keep seniors healthier longer and to become partners with their doctors rather than passive recipients of care, and
  • smart home devices to make it easier to run their homes, so that seniors could remain on their own as long as possible rather than entering some drab, sterile assisted-living facility (again, my bias showing…).

A lot has happened since I compiled the list. The changes have solidified my conviction that seniors, especially the less technologically minded, might be the acid test of consumer IoT user friendliness because they can’t be expected to work as hard at mastering devices, they don’t have the automatic openness of digital natives, and encounter differing degrees of reduced agility, etc. 

Also, given the current political climate, it makes sense to try to improve seniors’ lives as much as possible without requiring costly public services that are in jeopardy (I am trying to be civil here, OK?).

The most dramatic of these developments is the amazing success of Amazon’s voice-activated Echo.  I’ve praised it before as an ideal device for seniors, partially because voice is such a natural input for anyone, and particularly because it means that the tech-averse don’t have to learn about interfaces or programs, just speak! Even better, as the variety of “skills” increases, the Echo really is becoming a unified SmartAging hub: I can now control my Sensi smart thermostats and the “Ask My Buddy” skill can even call for assistance, so it works for both halves of SmartAging.  Although I haven’t tested it, I assume much of this also holds true for the Google Home.

There’s an increasing variety of other new Quantified Self devices, some of which are specifically focused on seniors, such as the GreatCall Jitterbug Smart phone, which comes with a simplified, over-size home page featuring “brain games” a la Lumosity, and an Urgent Response system (all of these features are available on an iPhone and, I assume, on Android, but must be set in Settings rather than being the default settings).

In addition, on the personal level, I convinced my Apple Store (disclaimer: I’m at the bottom of the food chain with Apple, not privy to any policies or devices under consideration, so this is just my opinion) to let me start bi-weekly classes at the local senior center on how to use Apple devices, especially the iPad. I continue to work with a lot of seniors who come into the store who are often leery of tech products.

Silver Medal!

Most directly, last month’s companywide Apple Wellness Challenge was life-changing for me.  This year the friendly competition focused on the Apple Watch (important, since a watch is a familiar form-factor to geezers). After wasting three days trying to find the app, I really got into the event because we could share results with friends to encourage (or shame, LOL) them — that really motivated me.  Bottom line: I managed to win a Silver Medal, Apple featured my experience on the event website, and, most important, I made lasting changes to my fitness regimen that I’ve sustained since then, now exercising almost an entire hour a day. I couldn’t help think afterward that the program really did show that user-friendly technology can improve seniors’ lives.

Sooo, with a few more years to think about them and more progress in devices themselves, (as well as increased sensitivity to issues such as privacy and security) here are my amended criteria for evaluating products and services for seniors. As I mentioned the first time, Erich Jacobs of OnKöl assisted with the specs):

Ease of Use

  1. Does it give you a choice of ways to interact, such as voice, text or email? Voice in particular is good for seniors who don’t want to learn about technology, just use it.
  2. Is it easy for you to program, or — if you them give your permission — does it allow someone else to do it remotely?
  3. Does it have either a large display and controls or the option to configure them through settings?
  4. Is it intuitive?
  5. Does it require hard-wired, professional installation?
  6. Is it flexible: can it be adjusted? Is it single purpose, or does it allow other devices to plug in and create synergies? Can it be a true hub for all your IoT devices?
  7. Does it complicate your life, or simplify it?
  8. Do any components require regular charging, or battery replacement?

Privacy, Security, and Control

  1. Is storage local vs. cloud or company’s servers? Is data encrypted? Anonymized?
  2. Do you feel creepy using it?
  3. Is it password-protected?
  4. Is security “baked in” or an afterthought?
  5. Can you control how, when, and where information is shared?
  6. If it is designed to allow remote monitoring by family or caregivers, can you control access by them?
  7. Will it work when the power goes out?

Affordability

  1. Are there monthly fees? If so, low or high? Long term contract required?
  2. Is there major upfront cost? If so, is that offset by its versatility and/or the contrast to getting the same services from a company?
  3. Does full functioning require accessories?

Design/UX

  1. Is it stylish, or does the design” shout” that it’s for seniors? Is it “Medical” looking?
  2. Is the operation or design babyish?
  3. Would younger people use it?
  4. Is it sturdy?
  5. Does it have “loveability” (i.e., connect with the user emotionally)? (This term was coined by David Rose in Enchanted Objects, and refers to products that are adorable or otherwise bond with the user.)

Architecture

  1. Inbound
    1. Does it support multiple protocols (eg. Bluetooth, BluetoothLE, WiFi, etc)
    2. Is the architecture open or closed?
  2. Outbound
    1. Does it support multiple protocols (eg. WiFi, Ethernet, CDMA, GSM, etc)
    2. Data path (cloud, direct, etc)
  3. Remote configuration capability (i.e., by adult child)? If so, can the user control amount of outside access?

Features and Functions

  1. Reminders
    1. Passive, acknowledge only
    2. Active dispensing (of meds)
  2. Home Monitoring
    1. Motion/Passive Activity Monitoring
    2. Environmental Alarms (Smoke, CO, Water, Temp)
    3. Intrusion Alarms (Window etc)
    4. Facilities/Infrastructure (Thermostat)
  3. Health Monitoring
    1. Vitals Collection
    2. Wearables Activity Monitoring
    3. Behavioral/Status Polling (How are you feeling today?)
    4. Behavioral Self-improvement
  4. Communications Monitoring
    1. Landline/Caller ID
      1. Identify scammers
    2. eMail and computer use
      1. Identify scammers
    3. Mobile phone use
  5. Fixed Personal Emergency Response System (PERS)
  6. Mobile Personal Emergency Response System (PERS)
  7. Fixed Fall Detection/Prediction
  8. Mobile Fall Detection/Prediction
  9. Telehealth (Video)
  10. New and Innovative Features

If you’re thinking about developing an IoT product and/or service for seniors I hope you’ll consider the SmartAging concept, and that these criteria will be helpful. If you’re looking for consulting services on design and/or implementation, get in touch!

comments: Comments Off on Updating my “SmartAging” device design criteria tags: , , , , , , , , ,

Libelium: flexibility a key strategy for IoT startups

I’ve been fixated recently on venerable manufacturing firms such as 169-yr. old Siemens making the IoT switch.  Time to switch focus, and look at one of my fav pure-play IoT firms, Libelium.  I think Libelium proves that smart IoT firms must, above all, remain nimble and flexible,  by three interdependent strategies:

  • avoiding picking winners among communications protocols and other standards.
  • avoiding over-specialization.
  • partnering instead of going it alone.
Libelium CEO Alicia Asin

Libelium CEO Alicia Asin

If you aren’t familiar with Libelium, it’s a Spanish company that recently turned 10 (my, how time flies!) in a category littered with failures that had interesting concepts but didn’t survive. Bright, young, CEO Alicia Asin, one of my favorite IoT thought leaders (and do-ers!) was recently named best manager of the year in the Aragón region in Spain.  I sat down with her for a wide-ranging discussion when she recently visited the Hub of the Universe.

I’ve loved the company since its inception, particularly because it is active in so many sectors of the IoT, including logistics, industrial control, smart meters, home automation and a couple of my most favorite, agriculture (I have a weak spot for anything that combines “IoT” AND “precision”!) and smart cities.  I asked Asin why the company hadn’t picked one of those verticals as its sole focus: “it was too risky to choose one market. That’s still the same: the IoT is still so fragmented in various verticals.”

The best illustration of the company’s strategy in action is its Waspmote sensor platform, which it calls the “most complete Internet of Things platform in the market with worldwide certifications.” It can monitor up to 120 sensors to cover hundreds of IoT applications in the wide range of markets Libelium serves with this diversified strategy, ranging from the environment to “smart” parking.  The new versions of their sensors include actuators, to not simply report data, but also allow M2M control of devices such as irrigation valves, thermostats, illumination systems, motors and PLC’s. Equally important, because of the potentially high cost of having to replace the sensors, the new ones use extremely little power, so they can last        .

Equally important as the company’s refusal to limit itself to a single vertical market is its commitment to open systems and multiple communications protocols, including LoRaWAN, SIGFOX, ZigBee and 4G — a total of 16 radio technologies. It also provides both open source SDK and APIs.

Why?  As Asin told me:

 

“There is not going to be a standard. This (competiting standards and technology) is the new normal.

“I talk to some cities that want to become involved in smart cities, and they say we want to start working on this but we want to use the protocol that will be the winner.

“No one knows what will be the winner.

“We use things that are resilient. We install all the agents — if you aren’t happy with one, you just open the interface and change it. You don’t have to uninstall anything. What if one of these companies increases their prices to heaven, or you are not happy with the coverage, or the company disappears? We allow you to have all your options open.

“The problem is that this (not picking a standard) is a new message, and people don’t like to listen.  This is how we interpret the future.”

Libelium makes 110 different plug and play sensors (or as they call them, “Plug and Sense,” to detect a wide range of data from sources including gases, events, parking, energy use, agriculture, and water.  They claim the lowest power consumption in the industry, leading to longer life and lower maintenance and operating costs.

Finally, the company doesn’t try to do everything itself: Libelium has a large and growing partner network (or ecosystem, as it calls it — music to the ears of someone who believes in looking to nature for profitable business inspiration). Carrying the collaboration theme even farther, they’ve created an “IoT Marketplace,” where pre-assembled device combinations from Libelium and partners can be purchased to meet the specific needs of niches such as e-health,  vineyards, water quality, smart factories, and smart parking.  As the company says, “the lack of integrated solutions from hardware to application level is a barrier for fast adoption,” and the kits take away that barrier.

I can’t stress it enough: for IoT startups that aren’t totally focused on a single niche (a high-stakes strategy), Libelium offers a great model because of its flexibility, agnostic view of standards, diversification among a variety of niches, and eagerness to collaborate with other vendors.


BTW: Asin is particularly proud of the company’s newest offering, My Signals,which debuted in October and has already won several awards.  She told me that they hope the device will allow delivering Tier 1 medical care to billions of underserved people worldwide who live in rural areas with little access to hospitals.  It combines 15 different sensors measuring the most important body parameters that would ordinarily be measured in a hospital, including ECG, glucose, airflow, pulse, oxygen in

It combines 15 different sensors measuring the most important body parameters that would ordinarily be measured in a hospital, including ECG, glucose, airflow, pulse, blood oxygen, and blood pressure. The data is encrypted and sent to the Libelium Cloud in real-time to be visualized on the user’s private account.

It fits in a small suitcase and costs less than 1/100th the amount of a traditional Emergency Observation Unit.

The kit was created to make it possible for m-health developers to create prototypes cheaply and quickly.

comments: Comments Off on Libelium: flexibility a key strategy for IoT startups tags: , , , , , , ,

2nd day liveblogging, Gartner ITxpo, Barcelona

Accelerating Digital Business Transformation With IoT Saptarshi Routh Angelo Marotta
(arrived late, mea culpa)

  • case study (didn’t mention name, but just moved headquarters to Boston. Hmmmmm).
  • you will be disrupted by IoT.
  • market fragmented now.

Toshiba: How is IoT Redefining Relationships Between Customers and Suppliers, Damien Jaume, president, Toshiba Client Solutions, Europe:

  • time of tremendous transformation
  • by end of ’17, will surpass PC, tabled & phone market combined
  • 30 billion connect  devices by 2020
  • health care IoT will be $117 billion by 2020
  • 38% of indiustry leaders disrupted by digitally-enabled competitors by 2018
  • certainty of customer-supplier relationship disruption will be greatest in manufacturing, but also every other market
    • farming: from product procurement to systems within systems. Smart, connected product will yield to integrated systems of systems.
  • not selling product, but how to feed into whole IoT ecosystem
  • security paramount on every level
  • risk to suppliers from new entrants w/ lean start-up costs.
  • transition from low engagement, low trust to high engagement, high trust.
  • Improving efficiencies
  • ELIMINATE MIDDLEMAN — NO LONGER RELEVANT
  • 4 critical success factors:
    • real-time performance pre-requisite
    • robustness — no downtime
    • scalability
    • security
  • case studies: energy & connected home, insurance & health & social care (Neil Bramley, business unit director for clients solutions
    • increase depth of engagement with customer. Tailored information
    • real-time performance is key, esp. in energy & health
    • 20 million smart homes underway in GB by 2020:
      • digitally empowering consumers
      • engaging consumers
      • Transforming relationships among all players
      • Transforming homes
      • Digital readiness
    • car insurance: real-time telematics.
      • real-time telematics data
      • fleet management: training to reduce accidents. Working  w/ Sompo Japan car insurance:
    • Birmingham NHS Trust for health (Ciaron Hoye, head of digital) :
      • move to health promotion paradigm
      • pro-actively treat patients
      • security first
      • asynchronous communications to “nudge” behavior.
      • avoiding hip fractures
      • changing relationship w/ the patient: making them stakeholders, involving in discussion, strategy
      • use game theory to change relationship

One-on-one w/ Christian Steenstrup, Gartner IoT analyst. ABSOLUTE VISIONARY — I’LL BE INTERVIEWING HIM AT LENGTH IN FUTURE:

  • industrial emphasis
  • applications more ROI driven, tangible benefits
  • case study: mining & heavy industry
    • mining in Australia, automating entire value train. Driverless. Driverless trains. Sensors. Caterpillar. Collateral benefits: 10% increase in productivity. Less payroll.  Lower maintenance. Less damage means less repairs.
    • he downplays AR in industrial setting: walking in industrial setting with lithium battery strapped to your head is dangerous.
    • big benefit: less capital expense when they build next mine. For example, building the town for the operators — so eliminate the town!
  • take existing processes & small improvements, but IoT-centric biz, eliminating people, might eliminate people. Such as a human-less warehouse. No more pumping huge amount of air underground. Huge reduction with new system.  Mine of future: smaller holes. Possibility  of under-sea mining.
  • mining has only had incremental change.
  • BHP mining’s railroad — Western Australia. No one else is involved. “Massive experiment.”
  • Sound sensing can be important in industrial maintenance.  All sorts of real-time info. 
  • Digital twins: must give complete info — 1 thing missing & it doesn’t work.
  • Future: 3rd party data brokers for equipment data.
  • Privacy rights of equipment.
  • “communism model” of info sharing — twist on Lenin.

 

Accelerating Digital Transformation with Microsoft Azure IoT Suite (Charlie Lagervik):

  • value networking approach
  • customer at center of everything: customer conversation
  • 4 imperatives:
    • engage customers
    • transform products
    • empower employees
    • optmize operations
  • their def. of IoT combines things/connectivity/data/analytics/action  Need feedback loop for change
  • they focus on B2B because of efficiency gains.
  • Problems: difficult to maintain security, time-consuming to launch, incompatible with current infrastructure, and hard to scale.
  • Azure built on cloud.
  • InternetofYourThings.com

 

Afternoon panel on “IoT of Moving Things” starts with all sorts of incredible factoids (“since Aug., Singapore residents have had access to self=driving taxis”/ “By 2030, owning a car will be an expensive self-indulgence and will no longer be legal.”

  • vehicles now have broader range of connectivity now
  • do we really want others to know where we are? — privacy again!
  • who owns the data?
  • what challenges do we need to overcome to turn data into information & valuable insight that will help network and city operators maximize efficiency & drive improvement across our transportation network?
  • think of evolution: now car will be software driven, then will become living room or office.
  • data is still just data, needs context & location gives context.
  • cities have to re-engineer streets to become intelligent streets.
  • must create trust among those who aren’t IT saavy.
  • do we need to invest in physical infrastructure, or will it all be digital?
  • case study: one car company w/ engine failures in 1 of 3 cars gave the consultants data to decide on what was the problem.
comments: Comments Off on 2nd day liveblogging, Gartner ITxpo, Barcelona tags: , , , , ,

Alexa and Aging: more on voice as THE interface for “SmartAging”

 Amazon Alexa & services it can trigger!

Amazon Echo & services it can trigger!

I predict every elderly person will soon have a personal home assistant, ready to respond to their every command.

However, that home health aide may not be human, but sit on the kitchen counter, and look suspiciously like Amazon’s breakthough IoT device, The Echo.

The late Mark Weiser, “the father of the Internet of Things,” famously predicted that “the best computer is a quiet, invisible servant,” and that’s certainly the potential with Echo, or the just announced Google Assistant (how sexy is that name? I like the fact it’s so impersonal. Let’s you fire one voice “assistant” and hire another without becoming personally attached, LOL), or the much-rumored Apple version, which might also include a camera (disclaimer: while I work part-time at an Apple Store, I ain’t privy to any inside dope, no way, no how).

That’s particularly the case when it comes to seniors, and my SmartAging vision of an IoT-based future for them combining Quantified Self health monitoring devices that can motivate seniors to improve their fitness levels, and smart home devices that can make it easier to manage their homes as they age, to avoid costly and soul-deadening institutionalization (or, even better, combining the two, as with one of my favorite IFTTT “recipes,”  programming your Jawbone to wake you gently at the best time in your sleep cycle, AND gradually turn on your Hue lights. How better for a senior — or anyone — to start their day on a positive note (OK, I know what you’re thinking: better turn on the coffee maker automatically!).

      KidsMD for Amazon Alexa

What really got me thinking about the advantages of a voice-activated future for seniors was a recent story about a similar app for the other end of the age spectrum, developed by our Children’s Hospital, for Alexa: KidsMD. What better for a harried mom or dad, with his or her hands full, AND a sick child to boot, than to simply ask for advice on temperature, fever and the like? That got me thinking that the same would apply to seniors as well, needing advice with some of the unwanted aspects of aging (I could mention here an example from a senior I care for, but that would be most unpleasant…). As I’ve said before, this would be helpful under any circumstances, but when the person needing help is a frail, tech-averse senior, it would be superb if s/he only had to speak a simple command or request to get needed help, or advice on something such as the proper amount of an over-the-counter drug to take.

There are tons of other life-improving reasons for such an approach for seniors, including:

Of course, and I can’t emphasize this enough, especially since seniors are already victims of so many scamming tricks, because these counter-top devices are always on, listening to you,  and because much of their possible use could be for reporting confidential health or financial data, privacy and security MUST be THE top priority in designing any kind of voice-activated app or device for seniors. Think of them as the canaries in the coal mine in this regard: protecting vulnerable seniors’ privacy and security should be the acid test of all voice-activated apps and devices for people of all ages.

Having said all that, as I noted in a piece last week about what a stunning combination of services Amazon has put together to become the dominant player in the retail IoT sector, one of those offerings is the $100 million Alexa fund to fuel advances in the voice-activated arena.  I’m ready to put their money where my mouth is  (LOL) in this regard, to design voice-activated devices and services for seniors.  If you’d like to partner, E-mail me!!

comments: Comments Off on Alexa and Aging: more on voice as THE interface for “SmartAging” tags: , , , , , , , , , , , , ,

I’ll Speak Twice at Internet of Things Global Summit Next Week

I always love the Internet of Things Global Summit in DC because it’s the only IoT conference I know of that places equal emphasis on both IoT technology and public policy, especially on issues such as security and privacy.

At this year’s conference, on the  26th and 27th, I’ll speak twice, on “Smart Aging” and on the IoT in retailing.

2015_IoT_SummitIn the past, the event was used to launch major IoT regulatory initiatives by the FTC, the only branch of the federal government that seems to really take the IoT seriously, and understand the need to protect personal privacy and security. My other fav component of last year’s summit was Camgian’s introduction of its Egburt, which combines “fog computing,” to analyze IoT data at “the edge,” and low power consumption. Camgian’s Gary Butler will be on the retail panel with me and with Rob van Kranenburg, one of the IoT’s real thought leaders.

This year’s program again combines a heady mix of IoT innovations and regulatory concerns. Some of the topics are:

  • The Internet of Things in Financial Services and the Insurance sector (panel includes my buddy Chris Rezendes of INEX).
  • Monetizing the Internet of Things and a look at what the new business models will be
  • The Connected Car
  • Connected living – at home and in the city
  • IoT as an enabler for industrial growth and competition
  • Privacy in a Connected World – a continuing balancing act

The speakers are a great cross-section of technology and policy leaders.

There’s still time to register.  Hope to see you there!

 

 

comments: Comments Off on I’ll Speak Twice at Internet of Things Global Summit Next Week tags: , , , , , , ,

AliveCor Mobile ECG: the IoT Can Save Your Life!

Got your attention? I find there’s nothing like the fear of death to focus one’s attention.

AiiveCor

AliveCor

Somehow I managed to forget blogging about one of the real highlights of last Spring’s RE-WORK Connect Summit here in Boston: the AliveCor Mobile ECG.*

Perhaps the most important thing about the Mobile ECG is that it is not just a helpful Quantified Self fitness device, but has past the rigors of the FDA licensing process, building both users’ and docs’ confidence in its reliability as a diagnostic tool, and also underscoring that  IoT devices can be significant parts of mobile health strategies. As Dr. Albert said to Forbes, ““No one cares whether their Fitbit is accurate or not …. A point of here or there. With ECGs, that’s different.”  In 2015 the FDA also approved an algorithm instantly letting you know if your reading was normal.

Because of the FDA approval, I put the Alive ECG in that special category of IoT devices and services that are important both in their own right and because of their symbolic role, especially when they meet my test of the IoT allowing “what can you do that you couldn’t do before,” in this case, a self-administered device that isn’t just generally informative about your fitness level, but also gives reliable medical documentation (especially since this allows that documentation to come as part of your activities of daily living, not requiring you to be in the artificial setting of a doctor’s office or hospital). 

I see it as a critical tool in my “Smart Aging” paradigm.

Atrial fibrillation (a common abnormal heart rhythm), the condition the ECG documents, is a huge, and growing, problem. The latest figures I could find, from four years ago, show that people who suffer from it are hospitalized twice as frequently as those who don’t have it, and the annual costs in the US alone are $26 billion.

I found the price on Froogle as low as $86 for one to fit a 5s. Sweeeet!

Here’s how it works.  The AliveCor is always available when you suspect you may have a heart problem, because it’s your smart-phone’s case! How brilliant is that?  You just rest the two metal pads on your fingers or chest to record an ECG in 30 seconds.

AliveCor ap reading

AliveCor ap reading

AliveCor has recently beefed up its app by adding the “Heart Journal.” After each reading, you just tap on a Symptom, Activity or Diet tag to add it to your recording, or, like a lot of Quantified Self apps, you can also add in notes between readings about possible indicators such as what you’re eating or your activities. The Beat Fluctuation feature lets you see how your heartbeat changes from beat to beat.

I couldn’t help but think how the AliveCor would have helped me last Winter, when Boston endured the 1-in-26,315-years-Winter-From-Hell (nope: no typo!) .  Like everyone else, I was perilously perched on my ladder, 20′ high, sticking my left hand through the ladder to pound away at an ice dam to my right with a REALLY heavy sledge hammer.  Unlike many others doing the same thing, I’m old enough (ahem..) that this counted as Risky Business.  After several hours, I started to feel chest pain.  Two days and many heart tests later, I emerged from the hospital with my own diagnosis confirmed: just a muscle strain caused by the weird position of my hammering. Couldn’t help thinking that if I’d had an AliveCor on my phone, I could have just whipped it out, taken a reading while on the ladder, and, as the web site sez,” AliveCor’s FDA-cleared Normal Detector will determine right away when your ECG is normal,” and gone back to chipping away!

Loved this quote about the AliveCor’s significance:

“Just as the introduction of thermometers and blood pressure cuffs in the past century helped patients to monitor their health, now the ability to record one’s own electrocardiogram – and get an interpretation instantly – empowers the 21st century patient to take charge of their heart health.” –Ronald Karlsberg, MD Clinical Professor of Medicine, Cedars-Sinai Heart Institute


 

*in my defense, I was mesmerized by AliveCor founder  Dr. David Albert’s colorful bowties….

 

comments: Comments Off on AliveCor Mobile ECG: the IoT Can Save Your Life! tags: , , , , , , , ,
http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management