Why Am I Not Surprised? GE Does It Again As IoT Innovator

POST-SCRIPT : LATE-BREAKING NEWS: GE WILL ANNOUNCE TOMORROW THAT THEY’RE MOVING THEIR WORLD HEADQUARTERS TO BOSTON.  EVEN THOUGH THE HEART OF THE COMPANY’S INDUSTRIAL INTERNET STRATEGY WILL REMAIN ITS SOFTWARE CENTER IN SILICON VALLEY, THIS SHOULD INEVITABLY BOOST BOSTON’S STATURE IN THE IoT: WE’RE ALREADY RANKED 4TH IN THE WORLD.


PROMINENT DISCLAIMER: I AM NOT ON THE GENERAL ELECTRIC PAYROLL, AS AMAZING AS THAT MAY SEEM CONSIDERING ALL THE NICE THINGS I SAY ABOUT THEM.

C by GE smart bulbs

Whether it’s their incredible Durathon battery plant or the 220-ton computer-on-wheels Evolution loco, I don’t think there’s any major company that gets it more about the IoT, or, as they brand it, the Industrial Internet. As I’ve said before, it’s not just IoT products, but also “IoT Thinking” (collaboration, closing the loop, etc.) on their part. So why am I not surprised that they’ve gone back to their roots and come up with the most practical smart bulb so far, the “C by GE” bulbs?

Surely the Wizard of Menlo Park is smiling down on them for this one!

This is not to take away from the pioneering Philips Hue bulbs (16 million colors? You kidding?), or the neat Playbulb ones that double as speakers, but it seems to me these are the ones so far (possible exception, the $15 Cree ones — although I’ve not been happy with short life-span of my earlier Cree LEDs….) but these seem to me to combine some kewl new features that weren’t available before smart bulbs with affordability: a kit of 4 will be priced at $50 if you order online.

So what’s the big deal? Unlike the HUEs and GE’s earlier Link LED, these won’t require linking to a hub to control them: they link to your phone directly, using Bluetooth.

The bulbs will come in two flavors, to start with: a plain-vanilla dimmable one for most rooms of the house, and the spiffy “C Sleeps” for the bedroom, which will allow you to choose three different color hues, including a bright white to energize yourself on waking, a middling one for most of the day, and a yellowish one that research has shown to be more sleep-inducing, for night time (for you wonks, here’s the science).

Equally important, according to C|NET, they’ll also be more affordable than other multi-hue bulbs:

“The C Sleep LEDs won’t be the first color-tunable smart LEDs on the market, but they’ll certainly be some of the most affordable. The Osram Lightify Starter Kit comes with just a single bulb and costs $60, while the Lifx White 800 LED costs $40. With two color-tunable bulbs plus two standard smart bulbs for $50, C by GE definitely looks like the better value. What’s more, GE is promising limited early-bird pricing that will bring the cost of a starter pack down to $40 for those willing to buy in at launch.”

Because it’s Bluetooth controlled you won’t be able to control it from outside the house, so I’m gonna have to stick with my WeMo sockets to make my wife happy, but supposedly it will work with the Apple HomeKit (“Siri, it’s time for bed”) or if you already have a Wink hub.

Once again, Thanks, Jeff Immelt!

PS: $1.92 a yr. in electric costs: they’ll help save the planet as well

 

Amazon Echo: is it the smart home Trojan Horse?

Could Amazon’s Echo be the Trojan Horse that gets the smart home and IoT inside our homes — and consciousness?

Typical Amazon Echo commands

I’ve always suspected Amazon was critical to corporate adoption of e-commerce in the ’90s because so many C-level executives were introduced to the concept by doing online holiday shopping for their families.  Just a hunch …

Fast forward to this holiday, and I suspect Amazon’s Echo will have a similar impact for the IoT and, in particular, smart homes (aided, no doubt, by the redoubtable Oprah, who gave it her imprimatur as one of her Favorite Things — which now, conveniently, has its own page on Amazon — for this year!).

In case you’ve been hibernating for the past few months, during which time the Echo has taken off, it’s the slim (9.25″ x 3.27″) cylinder that sits on your counter, and, after starting out largely to access Amazon’s streaming music service by voice, seems to take on new functions every week.

I suspect it’s the voice input that’s most important about Echo: because voice doesn’t require any technical skills.  I can’t think of any dedicated device (Apple’s Siri, a service on almost all its devices but the computers, is right up there, but a service, not a device. Again, obligatory disclaimer that I work part-time at The Apple Store but am not privy to any inside secrets) that better embodies the dictum of IoT “father” Mark Weiser, that:

The most profound technologies are those that disappear.
They weave themselves into the fabric of everyday life
until they are indistinguishable from it.

Alexa shopping list "recipe" on IFTTT

Alexa shopping list “recipe” on IFTTT

For me, the critical step was when Echo was added to my fav IoT site, IFTTT, which makes the IoT’s benefits proliferate by allowing you and me to create “recipes” to trigger devices without requiring any programming skills.

The number of new recipes allowing Alexa to “trigger” an action by a device, including Hue lights and the Nest thermostat, is constantly growing (you’ll notice that many of them relate to actions such as adding to shopping lists, a clever way of making it easier for users to shop at a certain online behemoth..).

An indication of exactly how far-reaching Echo could be as a hub?  It now even interfaces with the Automatic device, to help manage your car more effectively: “Alexa, how much gas is left in my tank?”

I’m also excited about Echo’s potential role as a hub for my “SmartAging” concept: granny starts out listening to Guy Lombardo’s “Managua Nicaragua” streaming on Amazon Prime, and the next thing you know, she’s saying “Alexa, turn down the thermostat 3 degrees.”  What could be easier? Haven’t seen any Echo links to Quantified Self devices yet, but I suspect that’s only a matter of time, and others are now enthused about its benefits to the disabled.


 

PS: You can track new developments with Echo on its Twitter feed, as well as one from Dave Isbitski, the Echo’s chief evangelist.

Data Is the Hub: How the IoT and Circular Economy Build Profits

Fasten your seatbelts! I think I’ve finally zeroed in on the Internet of Things’ (IoT’s) most important potential economic benefit and how it could simultaneously help us escape the growing global environmental crisis:

make real-time IoT data* the hub of a circular economy and management mentality. It’s both good for the bottom line and the planet.

I started writing about circular business models back in the 90’s, when I consulted on profitable environmental strategies, i.e., those that were good both for the corporate bottom line and the planet.  It galled me that executives who railed about eliminating inefficiency thought reducing waste was for tree-huggers. Semantics and lifestyle prejudices got in the way of good strategy.

Ford’s River Rouge Plant (1952 view)

I could see that it was vital that we get away from old, linear models that began with extracting resources and ended with abandoned products in landfills. Ford’s massive 1 x 1.6 mile River Rouge Plant, the world’s largest integrated factory, was the paradigm of this thinking: ore was deposited at one end, made into steel, and cars came out the other (Hank’s penchant for vertical integration even led him to buy rubber plantations! If you have any illusions about the ultimate impossibility of top-down control, watch the PBS documentary on Ford — he simply couldn’t share power, even with his own son — and it almost ruined the company). The linear model worked for a long time, and, truth to tell, it was probably the only one that was feasible in the era of paper-and-pencil information flow:  it was so hard to gather and transmit information that senior management controlled who got what information, and basically threw it over the transom to the next office.

As for any kind of real-time information about what was actually happening on the factory floor: fugetaboutit: all that was possible was for low-level functionaries to shuffle along the assembly line, taking scheduled readings from a few gauges and writing them on a clipboard. Who knew if anyone ever actually read the forms, let alone made adjustments to equipment based on the readings?

Fast forward to 2015, and everything’s changed!

The image of the circular corporation popped back into my head last week while I was searching for an image of how the IoT really can change every aspect of corporate operations, from product design to supply chain management.  I was happily surprised that when I Googled “circular economy” I found a large number of pieces, including ones from consulting gurus Accenture and McKinsey (the most comprehensive report on the concept is probably this one from the Ellen MacArthur Foundation), about the bottom-line and environmental benefits of switching from a linear (‘take-make-dispose’) pattern.

But how to make the circular economy really function? That’s where the IoT comes in, and, in my estimation, is THE crucial element.

Visualize everything a company does as a circle, with IoT-gathered real-time data as its hub. That’s crucial, because everything in a profitable circular company revolves around this data, shared in real time by all who need it.

When that happens, a number of crucial changes that were impossible in the era of linear operations and thinking and limited data became possible for the first time:

  • you can optimize assembly line efficiency because all components of the factory are monitored by sensors in real time, and one process can activate and regulate another, and/or managers and assembly-line workers can fine-tune processes (think of the 10,000 sensors on the GE Durathon battery assembly line).
  • you can integrate the assembly line with the supply chain and distribution and sales network as never before (provided that you share the real-time data with them), so materials are delivered on a just-in-time basis) and production is dictated by real-time data on sales (the SAP smart vending machine, integrated with logistics, is a great example).
  • you can optimize product redesign and upgrades and speed the process, because sensor data from the products as they are actually used in the field is immediately fed back to the designers, so they have objective evidence of what does, and doesn’t work properly (think of how GE has improved its product upgrade process). No more ignorance of how your products are actually used!
  • from an environmental standpoint, having sensors on key components can make it possible for you to recover and profitably remanufacture them (closing the loop) rather than having them landfilled (I was excited to learn that Caterpillar has been doing this for 40 years (!) through its Reman Program, which “reduces costs, waste, greenhouse gas emissions and need for raw inputs.”).
  • you can create new revenue streams, by substituting services for actual sales of products.  I’ve written before about how GE and RollsRoyce do this with jet engines, helping clients be more efficient by providing them with real-time data from jet turbines in return for new fees, and Deere does it with data feeds from its tractors. Now I learn that Phillips does this, with industrial lighting, retaining ownership of the lighting: the customers only pay for the actual use of the lights. Phillips also closes the loop by taking the lights back at the end of their life and/or upgrading them.

As I’ve written before, creating the real-time data is perhaps the easier part: what’s harder is the paradigm shift the circular economy requires, of managers learning to share real-time data with everyone inside the enterprise (and, preferably, with the supply chain, distribution network, retailers, and, yes, even customers). When that happens, we will have unprecedented corporate efficiency, new revenue streams, satisfied customers, and, equally important reduce our use of finite resources, cut pollution, and tread lightly on the earth.  There you have it: the secret to 21st-century profitability is:

real-time IoT data, at the hub of the circular enterprise.


*Oh yeah, please don’t drop a dime on me with the grammar police about the title: in fact, I’m a retired colonel in the Massachusetts Grammar Police, but I’ve given up the fight on “data.” From my Latin training, I know that data are the plural form of datum, but datum is used so infrequently now and data with a singular verb has become so common that I’ve given up the fight and use it as a singular noun.  You can see the issue debated ad nauseum here

Live Blogging from the IoT Global Summit

Keynotes:
Came in on end of presentation by Rep. Suzan DelBene, D-WA, co-chair of the House IoT Caucus and an IT industry vet. Her litany of federal inaction in the face of rapidly-evolving 2015_IoT_Summittech — especially regarding privacy protections, where  the key law was enacted in 1986 — was really dispiriting, although it’s good to know there are some members of Congress who are aware of the issue and working on it.

EU Ambassador to the US, David O’Sullivan: the IoT is a “quantum leap” because of combining digital and physical world, and will have huge implications.  Europe has created single digital market. Major investments in IoT & funding research on it.  Very open research projects.  Key is breaking down barriers within the economy. They’re doing research on every aspect of IoT. Priority must be overcoming vertical silos, such as cars and health care. Must balance regulation and innovation. Security and privacy: working on a new set of protections.

Dean Brenner, SVP for Gov. Affairs, Qualcomm: everything will need some form of connectivity. Will need new connectivity paradigm. 4G LTE gives solid foundation for cellular IoT growth.  5G will be fully-deployed by 2020.

Dr. Rakesh Kushwaha, Mformation (hmmm?) Business Leader, Alcatel-Lucent: securing IoT devices. Tech & standards that are already in place to secure mobile devices can be model for I0T devices: they worked with whole range of devices. Fundamental principle of the security: securely update through device/firmware update package.   Only about 40% of IoT will be cellular-based.  Alcatel securing vehicle-mounted devices using FW/SW updates. They will launch a project called IoT Connect.

Session 2: Security for the IoT

Dean Garfield, president & CEO, Information Technology Industry Council: think of security as a design feature, not afterthought. Have to think of it in global sense (including between vertical silos). Chinese government security demands are actually counterproductive. Security can be a differentiating feature.

Joseph Lorenzo-Hall, chief technologist, Center for Democracy and Technology: “IoT Spectrum of Insanity” — such as #IoT door locks, require protections be built in. Security by design. He thinks privacy is a bigger factor than security.

Stephen Pattison, vp of Public Affairs, ARM. Hacker only has to get it right once. You have to get it right every time!  Sensors will have to be very cheap ($5 or less), which will require real creativity.  Security will drive acceptability of IoT. Security breaches will be a major risk for IoT companies.

Chris Boyer, asst. vp, Global Public Policy, AT&T: different security concerns in each vertical domain. Functional classification determines the risk (for example, some affect interruption on critical infrastructure, or life risk). Virtualize security around the end device. Industry activities: application layers, service layer, network layer, access technologies. Looking 4 acceptable risk management levels.

Rory Gray, global head of sales, Intercede: “need world of trusted digital identities.” “Identity is the new currency.”

Government procurement standards may drive privacy and security by design.

Adam Thierer: are we overestimating how much people really care about IoT security (vs. the “cool” factor??).

Afternoon Privacy Panel:

Gary Shapiro, president & CEO, CSA: he disagrees that you should HAVE to give permission to have your info shared: cites all the benefits of sharing data. Thinks we went overboard with HIPPA & privacy. Announcing agreement on guiding principles for sharing health info from #QS devices. A sense that products will be unwelcomed if they create privacy or security issues: example of an Intel engineer who has vision problems. On a personal basis, his mother had terrible time with Alzheimer’s: he’s upset he won’t have access to a Google face recognition technology.

Rob Atkinson, president, Information Technology and Innovation Foundation: “privacy fundamentalists” argue really heavy regulation is way to protect privacy.  BUT, no empirical studies underlying that. Pew survey showed few people believe their landline or credit card data will be private, YET almost everyone uses credit cards or phones: i.e., no correlation between people’s belief in privacy of various technologies and their actual use of the technology.  Overly stringent privacy regulations will reduce their availability. Much of real value of IoT data is from secondary use of the data, which would be undermined by tough regulation. Way too early to put regulatory regime into place for IoT: too early.

Maneesha Mithal, assoc. director, Division of Privacy & Identity Protection, Bureau of Consumer Protection, FTC: two fairly controversial aspects of their 2013 workshop: minimizing data collection debate — said you shouldn’t collect all sorts of data forever, BUT, perhaps collect less sensitive data if they could still derive value. Second issue was “notice and choice.” Tried a middle ground: room for notice and choice,  Discussion of regulation: middle ground on regulation: shouldn’t have specific IoT regulation, but should have general, baseline privacy and security protections. We don’t bring “gotcha cases.”  Could have program that would provide incentives for self-regulation.

Gilad Rosner, Founder, Internet of Things Privacy Forum:  “notice & choice” has been the default privacy & security approach for Internet, but it “fundamentally places the burden of privacy protection on the individual.” A presidential group said the responsibility should rest with the provider, not the user.  Hallmark of a civil society is being regulated.

Day Two:

smart health panel:

You can access my “Smart Aging” presentation on Slide Share.

Peter Ohnemus of dacadoo, a Swiss company, gave an overview of IoT and healthcare and talked briefly about his company’s Health Score, a 0-1000 score assigned to participating individuals based on their real-time scores on factors including movement, nutrition, sleep and stress.

Chantal Worzala of the American Hospital Association gave an overview of issues such as information interoperability and new wellness incentives.

Robert Jarrin, senior director of gov. affairs for Qualcomm, talked about some of the policy issues. FDA now has dedicated staff for electronic devices, and they are now not requiring regulatory compliance for some basic devices.

Smart Home panel:

Hmm. Little actual focus on smart homes in this one…

Cees Links, ceo, Green Peak Technologies: they are a chip manufacturer, “wireless plumbers.” Shipped 1M Zigbee chips. “IoT is not about things, it’s about services.” “Smart Home should be called a butler.” Confusion about IoT standards: thinks ZigBee & Bluetooth will survive, proprietary standards won’t.

Ilkka Lakaniemi, chair, European Commission’s Future Internet Public-Private Partnership Program: working on smart cities strategies, esp. ones that are scalable. Working with NIST on common standards for the demo grants in US & EU. 61 cities involved.

Tobin Richardson, president & ceo, ZigBee Alliance. ZigBee, wi-fi & Bluetooth will form basis of a stable ecosystem. Dollar chip is the goal, getting there quickly.

Paul Feenstra, sr. vp of government & external affairs, The Intelligent Transport Society of America: evolution over last 5 years from car focus to a really varied multi-modal transportation industry. Shocking how we accept the high death rate & congestion on highways. 80% of crashes could be avoided by connected cars.

Business Models for the IoT:

Ana Sancho, Libellium: they manufacture sensor networks for the IoT. Solve problems from smart cities to agriculture & water resources. More than 90 different sensors. They just see very early testing the water with IoT on part of their clients: not widescale implementation.

 

 

 

 

 

 

 

Claro’s IoT Strategy Creation Guide: important in own right & symbolically

IoT_strategy_cards

Claro IoT Service Diagram Cards — collect the whole set!

Some IoT advances are as important symbolically (especially as key steps in the IoT’s maturation) as in their own right.

I consider Claro Partners‘s new “A Guide to Succeeding in the Internet of Things” in that vein, both showing that it’s not just enough to create a whizbang IoT device or app — you need a methodical strategy to maximize the benefits– and providing a very practical tool to create such a strategy. Written as the IoT reaches the top of the Gartner Hype Cycle, it aims at helping readers identify and meet real user needs and create viable business models. Based on several conversations at last night’s Boston IoT Meetup, it couldn’t be more timely, as (for example) smart home device sales slump, as reflected in Quirky’s bankruptcy.

Claro, in case you haven’t heard about them before, is headquartered in my favorite “smart city,” Barcelona, and is known for its Clayton Christensen-style emphasis on the opportunities presented by disruptive change (hmm: wonder if they have wei ji ideograms on the wall, LOL?), particularly with the IoT.

The Guide is a quick read, but can inspire you for a long time to come.

It’s divided into four portions, which I’m guessing codify the process that Claro uses internally to brainstorm strategies for its own clients:

  1. Define the challenge. “Identify a user-centric challenge to solve.”
  2. Ideate* the solution. “Create a solution that provides new value to the user.”
  3. Develop the offer. “Map out the ecosystem and interactions of your product and service.”
  4. Plan for production. “Identify resources needed and conduct gap analysis.”

They suggest you follow these steps sequentially, even if you already have a solution in mind, because “the exercises will help you to refine, develop or rethink it.”

Now for the details, which include very specific steps and some very helpful graphic aids.

First, Define the challenge. They stress you need to avoid being seduced by the lure of doing something just because it’s technologically possible. Make sure it meets a real
human need. The initial categories they suggest include:

    • Human Needs FrameworkAgeing population (sweeeeet! My “smart aging” paradigm shift!)
    • Work-life balance
    • Urban life
    • Health and wellbeing
    • Local Communities
    • Education
    • Sustainability/Shopping
    • Tourism, Family.

Then Claro suggests that your team go through a 30-minute process where it uses the four questions in this “human needs framework,” such as “what do people want to control?” and decide which challenge you’re going to design for (assume you could think big and try for one that meets multiple questions).

Second, Ideate the solution.  Similar to my “What can you do now that you couldn’t do before” question, this one asks you to not just use the IoT to refine a current approach to the issue you identified, but to “reimagine entirely new capabilities and value that an IoT service can deliver.”

This 40-min. process includes defining the person facing the challenge and aspects of their life, then brainstorming solutions to meet their real needs and how the IoT could be used to enable that solution.

Third, Develop the offer. They share my concern about proprietary IoT solutions, (which they label “intranet of things, LOL), and instead remind your team to, IFTTT-like,

IoT Service Diagram

IoT Service Diagram

“take advantage of the ecosystem enabled by the IoT to create interconnected services, experiences and business models.” In this process, which they estimate takes 40 minutes, you print out the IoT Service Diagram Cards (see above — I imagine “flipping” them and trading with the other kids on the playground, until our Moms throw out our collections…) and use them to map out how your idea will work, including drawing the data flow (don’t forget my dictum that data flow must be cyclical with the IoT!).  The important questions to ask — make sure to ask all of them! — include:

  • Will the device just provide information to the user or will it act on that information?
  • What are the specific inputs/outputs of the service? (eg. sight, sounds, touch, taste, smell, temperature)
  • Could the device learn through its use over time and adapt its behaviour accordingly?
  • Could the service use existing devices, data streams or interfaces?

Finally, in the fourth step, (30 minutes? Dream on!) the rubber hits the road, and you

IoT Canvas

IoT Canvas

Plan for Production!  Claro warns, “Don’t underestimate the complexity of bringing to life an offer that spans both the physical and digital, Do map out all the elements you’ll need to successfully develop and deliver your IoT offer.”

On the IoT Canvas, you bring together all the crucial considerations, such as manufacturing and logistics, revenues and costs, that must be nailed down to make the product affordable and profitable.  Specifically, Claro says you need to specifically state the offer’s value proposition to the end user, use the questions in each box on the form as prompts, fill out the rest of the canvas with details of the product and service idea, and write down “which resources, capabilities and processes you have, and which you’d need to acquire (gap analysis).”

I agree with Claro that these four steps, especially the last one, are iterative, and you need to revisit each of them throughout the entire conceptual and production process.

I have no doubt that, as IoT technology (especially miniscule, low-energy sensors) and experience continues to evolve, this process will be refined, but Claro has done the entire IoT industry, especially makers and entrepreneurs, a real service by codifying this approach and being willing to share it — after all, the IoT’s all about collaboration! 


*we’ll let them off with a warning from the Grammar Police this time. However, please, no more management babble in the future, OK?

 

comments: Comments Off on Claro’s IoT Strategy Creation Guide: important in own right & symbolically tags: , , , , ,

Free Citywide IoT Data Networks Will Catapult IoT Spread to Hyperspeed!

One of the truly exciting things about viral digital phenomena is how rapidly they can take hold, outstripping the slow, methodical spread of innovations in the pre-digital era.  I suspect we may be on the verge of that happening again, with an unlikely impetus: the crowdsourced global movement to create free citywide IoT data networks.

We’re been there before, with the movement to open real-time public access to city data bases, beginning when CTO (and later US CIO) Vivek Kundra did it in DC in 2008, then sponsored the Apps for Democracy competition to spark creation of open-source apps using the data (bear in mind this was at a time when you had to explain to many people what an “app” was, since they, and smart phones, were so new).  From the beginning, Kundra insisted that the apps be open source, so that hackers in other cities could copy and improve on them, as they have — worldwide.

I was doing consulting for him at the time, and remember how incredibly electric the early days of the open data movement were — it inspired my book Data Dynamite, and led to similar efforts in cities worldwide, which in turn set the stage for the “smart city” movement as the IoT emerged.

As detailed in my last post, we’re now launching a crowdsourced campaign to make Boston the first US city, and second worldwide (following Amsterdam) to have a free citywide IoT data network — and plan to up the ante by setting of goal to cover the neighborhoods too — not just the downtown.

The Things Network guys plan to build on their accomplishments, announcing this week that they will advise similar crowdfunded networks on five continents (including our Boston project). They place a major emphasis on grassroots development, to avoid subscription-based infrastructures that could be controlled from above and which would limit l0w-cost innovations, especially on the neighborhood scale.  According to founder Wienke Giezeman:

““If we leave this task up to big telcos, a subscription model will be enforced and we will exclude 99% of the cool use cases. Instead, let’s make it a publicly owned and free network so businesses and use cases will flourish on top of it.”

I’ve been a fan of mesh networks back to my days doing disaster and terrorism because they’re self-organizing and aren’t vulnerable because there isn’t a single point of failure. But it’s as much philosophical as technological, because you don’t have to wait for some massive central authority to install the entire system: it evolves through the decisions of individuals (we’re already finding that in Boston: it turns out that our system will be able to tap a number of LoRaWAN gateways that several companies had already installed for their own uses!) The Amsterdam guys share that perspective. Tech lead Johan Stokking says:

“We make sure the network is always controlled by its users and it cannot break at a single point. This is embedded in our network architecture and in our governance.”

Takes me back to my callow youth in the 6o’s: let a thousand apps bloom! (and, BTW, the great Kevin Kelly made this point in his wonderful Out of Control, back in the mid 90’s, especially with his New Rules for the New Economy (I’m going to take the liberty of posting all the rules here, because they are so important, especially now that we have technology such as LoRaWAN that foster them!):

1) Embrace the Swarm. As power flows away from the center, the competitive advantage belongs to those who learn how to embrace decentralized points of control.

2) Increasing Returns. As the number of connections between people and things add up, the consequences of those connections multiply out even faster, so that initial successes aren’t self-limiting, but self-feeding.

3) Plentitude, Not Scarcity. As manufacturing techniques perfect the art of making copies plentiful, value is carried by abundance, rather than scarcity, inverting traditional business propositions.

4) Follow the Free. As resource scarcity gives way to abundance, generosity begets wealth. Following the free rehearses the inevitable fall of prices, and takes advantage of the only true scarcity: human attention.

5) Feed the Web First. As networks entangle all commerce, a firm’s primary focus shifts from maximizing the firm’s value to maximizing the network’s value. Unless the net survives, the firm perishes.

6) Let Go at the Top. As innovation accelerates, abandoning the highly successful in order to escape from its eventual obsolescence becomes the most difficult and yet most essential task.

7) From Places to Spaces. As physical proximity (place) is replaced by multiple interactions with anything, anytime, anywhere (space), the opportunities for intermediaries, middlemen, and mid-size niches expand greatly.

8) No Harmony, All Flux. As turbulence and instability become the norm in business, the most effective survival stance is a constant but highly selective disruption that we call innovation.

9) Relationship Tech. As the soft trumps the hard, the most powerful technologies are those that enhance, amplify, extend, augment, distill, recall, expand, and develop soft relationships of all types.

10) Opportunities Before Efficiencies. As fortunes are made by training machines to be ever more efficient, there is yet far greater wealth to be had by unleashing the inefficient discovery and creation of new opportunities.”

If you really want to exploit the IoT’s full potential, you gotta read the whole book.

Equally important, the Obama Administration announced it will boost smart city app development with a new $160 million smart cities initiative:

“Among the initiative’s goals are helping local communities tackle key challenge such as reducing traffic congestion, fighting crime, fostering economic growth, managing the effects of a changing climate, and improving the delivery of city services. As part of the initiative, the National Science Foundation will make more than $35 million in new grants and the National Institute of Standards and Technology will invest more than $10 million to help build a research infrastructure to develop applications and technology that ‘smart cities’ can use.”

The LoRaWan gateways used in the Amsterdam project are already low cost: only 10 of the $1,200 units covered the downtown area. However, The Things Network hopes to crowdsource an even cheaper, $200 version through a Kickstarter campaign.  If that happens, even small cities will be able to have their own free citywide IoT data networks, and when that happens, I’m confident the IoT will shift into hyperdrive worldwide!

Are you on board?


 

Oh yeah, did you say what about the risks of privacy and security violations with such a large and open system? The Amsterdam lads have thought of that as well, reaching out to Deloitte from the get-go to design in security:

“To make this initiative grow exponentially, we have to take cyber security and privacy into account from the start of the development. Therefore, we have partnered with Deloitte, who is not only contributing to the network with a Gateway, but will also be the advisor on the security and privacy of the network.

“’We translate technology developments in the field of Digital, Data and Cyber Security into opportunities and solutions for our clients. We are therefore happy to support the Things Network as Security & Privacy advisor’ Marko van Zwam, Head of Deloitte Cyber Risk Services.”

SmartHomeDB: Invaluable Resource to Keep on Top of New Smart Home Devices

You can’t tell the players without a program!

smarthomeDBAs the speed of introducing new and increasingly varied smart home devices picks up, SmartHomeDB is more and more valuable as a way to find what you’re looking for and to keep on top of new products from an objective source.

Whether you’re a homeowner, make a competing product or are looking for market niches to exploit, I guarantee you’ll find it helpful!

At last count, they have 84 — count ’em — different categories of devices, from egg trays to pet doors, and, best of all, it offers a variety of easy ways to search, including the product categories, price, reviews, and — all important for smart home devices — compatibilities.

One thing that jumped out — see the screen grab — there are already almost 25,000 reviews of Amazon’s Echo (hmm, I’d better do one soon!), despite the short time it’s been on the market!  Haven’t seen the sales figures yet, but I suspect Echo is quickly becoming the smart home killer device (see Stacey Higginbotham’s very positive review).

In addition to the search options, the site features a neat intro to IoT devices, the QuickGuide, with two options: the simple one consists of your existing router, plus 242 (as of 9/111/15) Wi-Fi enabled products to choose among, plus 377 stand-alone smart home products such as Roombas.  The other, more diverse but trickier to configure, adds in routers using Z-Wave, Zigbee, and other frequencies, with 443 products using those frequencies.

Now they’ve added a new category, “Playbooks,” highlighting users’ hoped for or actual combinations of devices, which may help guide your choices, especially if they describe actual systems that are already in use.

There’s also an area for iOS, Android and Windows apps,  a handy listing of the top 100 devices based on the site’s ratings (which can sorted by compatibility, ranking, price, name, or number of reviews).

All in all, this is not only an important tool in its own right to help you create your own smart home network, but also symbolically, because it demonstrates the rapid growth of smart home products. Nice job!

 

 

comments: Comments Off on SmartHomeDB: Invaluable Resource to Keep on Top of New Smart Home Devices tags: , , , ,

Deloitte provides process for nuanced IoT strategy decisions

So much of the Internet of Things is still in the gee-whiz stage that we haven’t seen much in terms of nuanced IoT strategies. By that I mean ones that carefully weigh tradeoffs between companies and consumers to try to find strategies that are mutually beneficial and recognize there are new factors at play in IoT strategies, such as privacy and data mining, that may have positive or negative consequences for the customer/company interplay.

Deloitte’s “University” has made an important step in that direction with its “Power Struggle: Customers, companies and the Internet of Things” paper, co-authored by Brenna Sniderman and Michael E. Raynor.

In it, they explore how to create sustainable strategies that will be mutually beneficial to the customer and company — which are not always immediately apparent, especially when you explore the subtleties of how these strategies might play out in the new reality of the Internet of Things.

The study’s goal was to understand the factors that can distort IoT’s benefits, and instead create win-win IoT strategies.

Sniderman and Raynor suggest there are four quadrants into which a given strategy might fall:

  1. (the sweet spot!) “All’s well: Sufficient value is created, and that value is shared between customers and companies sufficiently equitably such that both parties are better off and feel fairly treated.
  2. “Hobson’s choice: A Hobson’s choice exists when you’re free to decide but only one option exists; thus, it is really no choice at all…. Even when customers come out ahead compared with their former options, their implied powerlessness can lead to feelings of unfairness.
  3. “Gridlock: In their quest for value capture, both sides are pulled in opposite directions, with neither able to move toward an optimal outcome. Here, both parties recognize IoT enablement as something that should lead to success, but neither party is able to reach it, since their competing interests or different value drivers are working at cross purposes.
  4. “Customer is king: Although particular IoT deployments might make economic sense for companies, customers end up capturing a disproportionate share of the new value created, pulling this outcome more in the customers’ favor; Craigslist is an obvious example.”

According to the authors, a key to finding the win-win, “all’s well” solution is the Information Value Loop (which I first discussed last Spring) that creates value out of the vast increase in information made possible by the IoT.

As I mentioned then, “This fits nicely with one of my IoT ‘Essential Truths,’ that we need to turn linear information flows into cyclical ones to fully capitalize on the IoT.” When you do that, it’s possible to design continuous improvement processes that feed back data from actual users to fine tune products and processes.  GE has found it leads to much shorter iterative loops to design improved versions of its products.

Here’s the gussied-up version of the cool hand-drawn visualization from the Deloitte brainstorming session that led to the Information Value Loop (print it & place it on your wall next to the one on privacy and security that I wrote about a while ago):

Deloitte Information Value Loop

The information no longer flows in linear fashion: it’s created from using sensors to record how things act in the real world, then goes through the various stages of the loop, each of which is made possible by one of the new technologies enabling the IoT.  The goal is either enhanced M2M integration among things, or improved actions by humans, and, to be sustainable over time:

“A value loop is sustainable when both parties capture sufficient value, in ways that respect important non-financial sensibilities. For example, retailer-specific and independent shopping apps can use past browsing and purchasing history—along with other behaviors—to suggest targeted products to particular customers, rather than showing everyone the same generic products, as on a store shelf. Customers get what they want, and companies sell more.

…  “The amount of value created by information passing through the loop is a function of the value drivers identified in the middle. Falling into three generic categories—magnitude, risk, and time—the specific drivers listed are not exhaustive but only illustrative. Different applications will benefit from an emphasis on different drivers.”

OK, so how does this theory play out?

Sniderman and Raynor picked a range of IoT-informed strategies to illustrate the concept, some of which may include unintended consequences that would harm/turn off customers or companies. For example, “An ill-considered push for competitive advantage could well overreach and drive away skittish customers. Alternatively, building too dominant an advantage may leave customers feeling exploited or coerced, a position unlikely to prove viable in the long term.”

Understanding the underlying structure of each type of loop is critical, because they naturally pull an IoT strategy in a particular, divergent way.

The example they pick to illustrate the “all’s well” quadrant of results is the dramatic increase in built-in diagnostic technology in cars.  This is of great personal interest: genetic testing has revealed that I am one of the approximately 10% of men who are missing the male car gene: I can’t stand the things, and view them as a big block of metal and plastic just waiting to develop problems (or, ahem, get hit by deer …), so I need all the help I can get. Sniderman and Raynor zero in on maintenance as one area for win-win benefits for drivers and dealers through the IoT:

“Customers often have little understanding of which repairs are necessary, feel inconvenienced by having to go without their car during maintenance periods, and are frustrated by potential overcharges. In response, automakers are embedding sensors that can run a wide range of reliable diagnostics, allowing a car to “self-identify” service issues, rather than relying on customers (“Where’s that squeaking coming from?”) or mechanics (“You might want to replace those brake pads, since I’ve already got the wheels off”). This creates a level of objectivity of obvious customer value and enables automakers to differentiate their products. Interactive features that work with customers’ information can further add value by, for example, potentially syncing with an owner’s calendar to schedule a dealership appointment at a convenient time and reserving a loaner vehicle for the customer, pre-programmed with his preferences to minimize the frustration of driving an unfamiliar car.

In this scenario, both parties collaborate to provide and act on data, in a mutual exchange of value. The customer captures value in multiple ways: He enjoys increased convenience and decreased frustration, improved vehicle performance and longer operating life, reduced maintenance charges, and—since almost everything about this interaction is automated—fewer occasions for perceived exploitation at the hands of unscrupulous service providers.

Value capture extends to companies in the form of ongoing customer interaction. Linking maintenance programming to the dealership encourages customers to return for tune-ups rather than go elsewhere, ideally leading to continued purchases in the long term. OEMs can also access data regarding vehicle maintenance issues and may be able to identify systematic malfunctions worthy of greater attention. Dealers also have an opportunity to make inroads into an untapped market: Currently, just 30 percent of drivers use the dealer for routine maintenance…”

Kumbaya! But then there’s the opposite extreme, according to Sniderman and Raynor, represented by smart home devices, which would lead to the lose-lose, gridlock scenario.  I think they seriously underestimate the understanding already by manufacturers in the field that they need to embrace open standards in order to avoid a range of competing standards (Zigbee, Bluetooth, etc.) that will force consumers to invest in a variety of proprietary, incompatible hubs, and therefore discourage them from buying anything at all.  All you have to do is look at new hubs, such as Amazon’s Echo, which can control devices from WeMo, Hue, Quirky, Wink — you name ’em, to realize that sharing data is already the norm with smart home devices.

Because this missive is getting long, I’ll leave it to you, dear reader, to investigate Sniderman & Raynor’s examples of the “customer is king” scenario, in which the customer grabs too much of the benefit (have to admit, a lot of the location-based IoT retail incentives still give me the creeps: I hate shopping under the best of circumstances, and having something pop up on my phone offering me an incentive based on my past purchases makes a bad experience even worse. How about you?); and the “Hobson’s choice” one, in which usage-based car insurance runs amok and insurers begin to charge unsafe drivers a surcharge — as documented by the devices such as Progressive’s “Snapshot” (I was dismayed to read in the article that Progressive is in fact doing that in Missouri, although I guess it’s a logical consequence of having objective evidence that someone consistently drives unsafely).

I can’t help thinking that the 800-pound gorilla in the room in many of these situations are the Scylla and Charybdis of the IoT, threats to privacy and security, and that makes it even more important that your IoT strategies are well thought out.

They conclude that, from my perspective, data isn’t just enough, you also need the decidedly non-technical tools of judgment and wisdom (aided by tools such as their Information Value Loop) to come up with a sustainable, mutually advantageous IoT strategy:

“Identifying where the bottlenecks lie (using the Information Value Loop), how each party is motivated to respond, and seeking to shape both incentives and the value loop itself puts companies more in control of their destinies.

“Second, taking a hard look at who benefits most from each IoT-enabled transaction, understanding when a lopsided value-capture outcome tips too far and becomes unsustainable, and taking steps to correct it may also lead to long-term success.

“Lastly, an honest assessment of where IoT investments may not have an appreciable benefit—or may decrease one’s potential for value capture—is just as crucial to a company’s IoT strategy as knowing the right places to invest.”

I may quibble with some of their findings, such as those about smart homes, but bravo to Sniderman and Raynor for beginning what I hope is a spirited and sustained dialogue about how to create sustainable, mutually-advantageous IoT strategies!  I’ve weighed in with my Essential Truths, but what are you thinking about this critical issue, often overlooked in our concentration on IoT technologies? 

comments: Comments Off on Deloitte provides process for nuanced IoT strategy decisions tags: , , , , , , ,

Share It (Data) and They Will Come: Crowdsourced Citywide IoT Network

I haven’t been as excited about anything for a long time as I am about a global revolution that began last week in Amsterdam!

Cities are rapidly becoming the very visible and innovative laboratories for IoT innovation, which is logical, because they’ve been in the forefront of open data — as I saw first-hand when I was consulting for Vivek Kundra when he opened up vast amounts of real-time data as CTO for the District of Columbia as part of its Apps for Democracy initiative in 2008 that was part of the larger democratizing data movement.

Now there’s an exciting new development in Amsterdam, that really is bringing power to the people: The Things Network, the first crowdsourced free citywide IoT district. Astonishingly, volunteers brought the whole system to launch in only four weeks!

So far, the creators are visualizing a wide range of uses, but I particularly liked a particularly local one for a city synonymous with canals:

“A pilot project to demonstrate the Things Network’s potential will see boat owners in the city (there are many, thanks to its network of canals) able to place a small bowl in the base of their vessel. If the boat develops a leak and starts taking on water, the bowl will use the network to send an SMS alert to a boat maintenance company that will come along and fix the problem.”

How cool is that?  It also illustrates what I think is one of the key intangibles about the IoT: when you empower everyone (and I mean that literally!) by opening up data, people will find more and more innovative IoT devices and services, stimulated by their own particular needs, desires — and sometimes, even pain (that’s why I think even the most optimistic views of the IoT’s impact will be dwarfed as it becomes ubiquitous!).

Even more exciting, the group’s goal is to bring the technology to every city in the world! That, my friends, will be an incredible global game-changer. Think of it: EVERY city will become an open laboratory for change.

The Things Network uses low-power, low-bandwidth LoRaWAN technology to create the network: ten $1,200 hubs covered the whole city!  Having been hiding under a rock, I must admit I’d never heard of LoRaWan. Here are the benefits:

  • don’t need 3G or WiFi to connect with the Internet — no WiFi passwords, mobile subscriptions
  • no setup costs
  • low battery usage
  • long range
  • low bandwidth.

The whole scheme reminds me of the old Andy-Hardy-it’s-crazy-enough-it-might-work thinking:

“Dutch entrepreneur Wienke Giezeman came up with the idea for the Things Network just six weeks ago when he came across a €1,000 ($1,100) LoRaWAN gateway device and realized that with 10 such devices, the whole of Amsterdam could be covered. He pitched his idea at an Internet of Things meetup in the city and received a positive response.

“Work then began to create a community-owned data network that developers could build on top of without any proprietary restrictions. Companies including The Next Web and accountancy giant KPMG have agreed to host gateway devices at their premises, and the City of Amsterdam local authority is enthusiastic about the idea.”

How’s this for a vision?

“Because the costs are very low, we do not have to rely on large telco corporations to build such a network. Instead, we can crowdsource the network and make it public without any form of subscription. Our mission is to enable a network by the users for the users.” (my emphasis)

Most important from a democratizing data standpoint, it will all be open source:

“Our goal is to make the network architecture as decentralized as possible. And avoid any points of failure or control. We already have a community of 10 developers writing network software and equipment firmware.”

Giezeman wants to cut the cost before launching his plan of making the concept worldwide. He will soon launch a Kickstarter campaign to fund production of a smaller, €200 ($220) LoRaWan (vs. the $1,200 current ones). He may offer consulting services to capitalize on the idea, but that’s not the current priority.

That kind of openness and lack of strings attached, IMHO, is going to really lead to incredible innovation!  We’re holding a Boston IoT MeetUp hackathon next month to try to bring similar innovation to The Hub, and wouldn’t it be wonderful if cities everywhere launched a virtuous competition to speed smart cities’ adoption (and, don’t forget: this has huge implications for companies as well: there’s nothing to stop smart companies from creating new products and services to capitalize on the shared data!).

I note Amsterdam is 84 square miles, and The Hub of the Universe is 89 sq. miles, so I suspect the costs would be similar here.  I’m throwing down the gauntlet: let’s make Boston the second IoT city!

Let a thousand neighborhoods bloom!

 

The IoT Will Reinvent Replacement Parts Industry

Of all the Internet of Things’ revolutionary impacts on industry, perhaps none will be as dramatic as on replacement parts, where it will team with 3-D printing to reduce service time, inventory and costs.

I came to that realization circuitously, upon noticing Warren Buffett’s blockbuster purchase of Precision Castparts, the major precision parts supplier to the aeronautics industry.  Having read last year about yet another breakthrough innovation by Elon Musk, i.e., the first totally 3-D printed rocket engines, I was curious to see what Precision was doing in that area.  Unless my search of their website was flawed, the answer is zip, and that suggests to me that Buffett, who famously once said he doesn’t invest in technology because he doesn’t understand it, may have just bought …. a rather large dinosaur.

I noticed that one of Precision’s biggest customers is GE, which not only is using 3-D jet fuel nozzles on its engines but also ran a high-profile contest to design a 3-D printed engine mount that was open to you, me and the kids trying out the new 3-D printer at our little town’s library (note to Mr. Buffett: might be good to schedule a sit-down with Jeff Immelt before one of your biggest customers takes things in-house). As I’ve written before, not only is GE a world leader in the IoT and 3-D printing, but also in my third magic bullet, nanotech: put all three together, and you’re really talking revolution!

OK, I know 3-D printing is sloow (in its current state), so it’s unlikely to replace traditional assembly lines at places such as Precision Castparts for large volumes of parts, but that doesn’t mean it won’t rapidly replace them in the replacement parts area.  I talked to a friend several years ago whose biz consists of being a broker between power plants that need replacement parts yesterday and others with an excess on hand, and couldn’t help thinking his days were numbered, because it was predicated on obsolete technology — and thinking.

Think of how the combined strengths of the IoT and 3-D printing can help a wide range of industries get replacement parts when and where they need them, and at potentially lower cost:

  • sensors in IoT-enabled devices will give advance notice of issues such as metal fatigue, so that repairs can be done sooner (“predictive maintenance“), with less disruption to normal routine, cheaper and reducing the chance of catastrophic failure.
  • because data can be shared on a real-time by not only your entire workforce, but also your supply chain, you can automate ordering of replacement parts.
  • perhaps most important, instead of a supplier having to maintain a huge inventory of replacement parts on the possibility they may be needed, they can instead be produced only when needed, or at least with a limited inventory (such as replacing a part in inventory as one is ordered). This may lead to “re-shoring” of jobs, because you will no longer have to deal with a supplier on the other side of the globe: it might be in the next town, and the part could be delivered as soon as printed, saving both delay and money.
  • your company may have your own printer, and you will simply pay the OEM for the digital file to print a part in-house, rather than having to deal with shipping, etc.

And, as I mentioned in the  earlier post about GE’s leadership in this area, there are other benefits as well:

  • “We’ll no longer do subtractive processes, where a rough item is progressively refined until it is usable.  Instead, products will be built atom-by-atom, in additive processes where they will emerge exactly in the form they’re sold.
  • “Products will increasingly be customized to the customer’s exact specifications. The products will be further fine-tuned based on a constant flow of data from the field about how customers actually use them.”

Sooo, Mr. Buffett, it’s time that you come to terms with 21-st century technology or Berkshire Hathaway’s financial slide may continue.

 

comments: Comments Off on The IoT Will Reinvent Replacement Parts Industry tags: , , , , , , , , , , , ,
http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management