Siemens’s MindSphere: from automation to digitalization

Perhaps the most important component of a successful IoT transformation is building it on a robust platform, because that alone can let your company go beyond random IoT experiments to achieve an integrated IoT strategy that can add new components systematically and create synergistic benefits by combining the various aspects of the program.

A good starting point for discussion of such platforms is a description of the eight key platform components as detailed by IoT Analytics:

  1. “Connectivity & normalization: brings different protocols and different data formats into one ‘software’  interface ensuring accurate data streaming and interaction with all devices.
  2. Device management: ensures the connected ‘things’ are working properly, seamlessly running patches and updates for software and applications running on the device or edge gateways.
  3. Database: scalable storage of device data brings the requirements for hybrid cloud-based databases to a new level in terms of data volume, variety, velocity and veracity.
  4. Processing & action management: brings data to life with rule-based event-action-triggers enabling execution of ‘smart’ actions based on specific sensor data.
  5. Analytics: performs a range of complex analysis from basic data clustering and deep machine learning to predictive analytics extracting the most value out of the IoT data-stream.
  6. Visualization: enables humans to see patterns and observe trends from visualization dashboards where data is vividly portrayed through line-, stacked-, or pie charts, 2D- or even 3D-models.
  7. Additional tools: allow IoT developers prototype, test and market the IoT use case creating platform ecosystem apps for visualizing, managing and controlling connected devices.
  8. External interfaces: integrate with 3rd-party systems and the rest of the wider IT-ecosystem via built-in application programming interfaces (API), software development kits (SDK), and gateways.”

Despite (or because of, the complexity,) I think this is a decent description, because a robust IoT platf0rm really must encompass so many functions. The eight points give a basis for deciding whether what a company hawks as an IoT platform really deserves that title or really constitutes only part of the necessary whole (Aside: it’s also a great illustration of my Essential Truth that, instead of hoarding data as in the past, we must begin to ask “who else can use this data?” either inside the company or, potentially, outside, then use technology such as an IoT platform to integrate all those data uses productively.).

During my recent Barcelona trip (disclaimer: Siemens paid my way and arranged special access to some of its key decision makers, but made no attempt to limit my editorial judgment) I interviewed the company’s Chief Strategy Officer, Dr. Horst J. Kayser, who made it clear (as I mentioned in my earlier post about Siemens) that one of the advantages the company has over pure-play software firms is that it can apply its software offerings internally first and tweak them there, because of its 169-year heritage as a manufacturer, and “sits on a vast program of automation.”

Siemens’s IoT platform, MindSphere  is a collaboration with SAP, using the latter’s vast HANA cloud.  It ties together all components of Siemens’s IoT offerings, including data analytics, connectivity capabilities, developers’ tools, applications and services. MindSphere focuses on monitoring manufacturing assets’ real-time status, to evaluate and use customers’ data, producing insights that can cut production costs, improve performance, and even switch to predictive maintenance. Its Mind Connect Nano collects data from the assets and transferring it to MindSphere.

The “digital twin” is integrated throughout the MindSphere platform. Kayser says that “there’s a digital twin of the entire process, from conception through the manufacturing and maintenance, and it feeds the data back into the model.” In fact,  one dramatic example of the concept in action is the new Maserati Ghibli, created in 16 months instead of 30 — almost 50% less time than for prior models.  Using the Teamcenter PLM software, the team was able to virtually develop and extensively test the car before anything was created physically.

IMHO, Mindsphere and components such as Teamware might really be the key to actualizing my dream of the circular company, in this case with the IoT-based real-time digital twin at the heart of the enterprise — as Kayser said, “everything is done through one consistent data set.)” I hope to explore my concept, and the benefits I think it can produce, more with the Siemens strategists in the future!  I tried the idea out on several of them in Barcelona, and no one laughed, so we’ll see…

As with the company’s rail digitization services that I mentioned in my earlier post, there’s an in-house guinea pig for MindSphere as well: the company’s “Factory of the Future” in Amberg. The plant manufactures Simatic controllers, the key to the company’s automation products and services, to which digitalization is now being added as part of the company’s Industrie 4.0 IoT plan for manufacturing (paralleling GE’s “Industrial Internet.”). As you may be aware, Siemens’s efforts in this area are a subset of a formal German government/industry initiative — I  doubt seriously we’ll see this in the U.S. under Trump.

The results of digitalization at Amberg are astonishing by any measure, especially the ultimate accomplishment: a  99.9988 percent rate (no typo!!), which is even more incredible when you realize this is not mass production with long, uniform production runs: the plant manufactures more than 1,000 varieties of the controllers, with a total volume of 12 million Simatic products each year, or about one per second.  Here are some of the other benefits of what they call an emphasis on optimizing the entire value chain:

  • shorter delivery time: 24 hours from order.
  • time to market reduced by up to 50%.
  • cost savings of up to 25%

Of course there are several other robust IoT platforms, including GE’s Predix and PTC’s Thingworx, but my analysis shows that Mindsphere meets IoT Analytics’ criteria, and, combined with the company’s long background in manufacturing and automation, should make it a real player in the industrial internet. Bravo!

My #IoT predictions for 2015

I was on a live edition of “Coffee Break With Game-Changers” a few hours ago with panelists Sherryanne Meyer of Air Products and Chemicals and Sven Denecken of SAP, talking about tech projections for 2015.

Here’s what I said about my prognostications:

“I predict that 2015 will be the year that the Internet of Things penetrates consumer consciousness — because of the Apple Watch. The watch will unite both health and smart home apps and devices, and that will mean you’ll be able to access all that usability just by looking at your watch, without having to fumble for your phone and open a specific app.

If Apple chooses to share the watch’s API on the IFTTT – If This Then That — site, the Apple phone’s adoption – and usability — will go into warp speed. We won’t have to wait for Apple or developers to come up with novel ways of using the phone and the related devices — makers and just plain folks using IFTTT will contribute their own “recipes” linking them. This “democratization of data” is one of the most powerful – and under-appreciated – aspects of the IoT. In fact, Sherryanne, I think one of the most interesting IoT strategy questions for business is going to be that we now have the ability to share real time data with everyone in the company who needs it – and even with supply chain and distribution networks – and we’ll start to see some discussion of how we’ll have to change management practices to capitalize on this this instant ability to share.

(Sven will be interested in this one) In 2015, the IoT is also going to speed the development of fog computing, where the vast quantities of data generated by the IoT will mean a switch to processing data “at the edge,” and only passing on relevant data to the cloud, rather than overwhelming it with data – most of which is irrelevant.

In 2015 the IoT is also going to become more of a factor in the manufacturing world. The success of GE’s Durathon battery plant and German “Industry 4.0” manufacturers such as Siemans will mean that more companies will develop incremental IoT strategies, where they’ll begin to implement things such as sensors on the assembly line to allow real-time adjustments, then build on that familiarity with the IoT to eventually bring about revolutionary changes in every aspect of their operations.

2015 will also be the year when we really get serious about IoT security and privacy, driven by the increasing public concern about the erosion of privacy. I predict that if anything can hold back the IoT at this point, it will be failure to take privacy and security seriously. The public trust is extremely fragile: if even some fledgling startup is responsible for a privacy breach, the public will tend to tar the entire industry with the same brush, and that could be disastrous for all IoT firms. Look for the FTC to start scrutinizing IoT claims and levying more fines for insufficient security.”

What’s your take on the year ahead? Would love your comments!

comments: Comments Off on My #IoT predictions for 2015 tags: , , , , , ,
http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management