Digital Twins: Could They Have Uncovered the Boeing 737 Problems Sooner? — and how might they benefit your company

Tragically, the Boeing 737-Max includes an Internet of Things technology — the “digital twin” — that might have avoided the current tragedies, if only its use had been extended from the engines to the entire plane’s operations. Even if your products don’t involve such high stakes as a jet plane does, your company should seriously consider adding the digital twin to your services, because it can benefit every aspect of your operations and strategy.

Let me explain.

A joint venture company between GE Aviation and a French company makes the Max’s CFM International LEAP engines.  Every one of them is paired to a digital representation of the engine, a digital twin, that allows an engineer thousands of miles away to instantly monitor an inflight engine’s current operations.  That, among many other benefits, allows GE to replace the preventive maintenance of the past, which had to rely on after-the-fact data about when the average engine needed to be maintained, with “predictive maintenance,” which uses data about the earliest evidence of a possible problem to trigger a sequence to intervene early on, well before a major problem. At its most extreme, that could mean that when a plane whose sensors have detected an engine anomaly lands at its destination, the mechanic would be ready to go, knowing not only where in the engine the problem existed, but also having had the replacement part automatically dispatched from a distribution hub, so the replacement could be done quickly and at least cost.  No wonder GE has created more than hundreds of thousands of digital twins for products ranging from the jet engines to medical devices.

What if Boeing had extended the “digital twin” concept to the entire plane’s operations, including the navigation software?  The real essence of the Internet of Things — of which the digital twin is perhaps the ideal example of how the IoT merges the digital and physical — is that it allows everyone who needs it to instantly share (the verb is critical!) that real-time data — something that was impossible in the past.  In this case, that could mean real-time sharing between the cockpit, the airline, and Boeing, rather than after the fact harvesting of data from a plane’s “black box.” Hypothetically, the ability to share the real-time cockpit data would have meant that all those parties could have collaboratively brainstormed solutions to possible in-flight problems such as the maneuvering characteristics augmentation system, (MCAS) that has been fingered the possible cause of the problems.

OK, how does this ability to share real-time data from a digital twin apply to your company’s products and operations? 

The potential benefits extend to every aspect of your operations:

More radically, the digital twin’s benefits in terms of reliability and improved design can allow a fundamental change in your business model, away from selling products to leasing them, with the customer’s actual cost based on use of the product (if the turbine is sitting on the ground being repaired, it ain’t bringing the manufacturer any revenue!).  All three major jet turbine manufacturers — GE, Pratt & Whitney, and Rolls-Royce — have made this switch. They can even create new revenue streams by selling the real-time in-flight data to airlines, which can mash it up with atmospheric conditions, fuel prices, etc., to maximize flight efficiency.  Similarly, Hortilux, which makes greenhouse lights, now provides artificial light, plus data on growing conditions, rather than selling the bulbs.

Even more important than the potential to improve individual aspects of operations through digital twins is the potential for innovation and creativity if all departments (and, if you choose, even supply chain and distribution network partners and, conceivably, your customers) look at and can discuss the data—ground truth—simultaneously.

Determination of exactly what happened and why with the 737-Maxes will require intense scrutiny, but your company can benefit from the wake-up call these tragedies have provided to the IoT’s new-found ability to gather and share operating data instantly, with the result being improving every aspect of your operations and strategy.

comments: Closed tags: , , , , , ,

IoT Intangibles: Increased Customer Loyalty

There are so many direct, quantifiable benefits of the IoT, such as increased quality (that 99.9988% quality rate at Siemens’s Amberg plant!) and precision, that we may forget there are also potential intangible benefits.

Most important of those is customer loyalty, brought about by dramatic shifts both in product designs and how they are marketed.

Much of this results from the IoT lifting the veil of Collective Blindness to which I’ve referred before: in particular, our prior inability to document how products were actually used once they left the loading dock. As I’ve speculated, that probably meant that manufacturers got deceptive information about how customers actually used products and their degree of satisfaction. The difficulty of getting feedback logically meant that those who most liked and most hated a product were over-represented: those who kinda liked it weren’t sufficiently motivated to take the extra steps to be heard.

Now, by contrast, product designers, marketers, and maintenance staffs can share (that critical verb from my Circular Company vision!) real-time data about how a product is actually operating in the field, often from a “digital twin” they can access right at their desks.

Why’s that important?

It can give them easy insights (especially if those different departments do access and discuss the data at the same time, each offering its own unique perspectives, on issues that will build customer loyalty:

  • what new features can we add that will keep them happy?
  • can we offer upgrades such as new operating software (such as the Tesla software that was automatically installed in every single car and avoided a recall) that will provide better customer experiences and keep the product fresh?
  • what possible maintenance problems can we spot in their earliest stages, so we can put “predictive maintenance” services into play at minimal cost and bother to the customer?

I got interested in this issue of product design and customer loyalty while consulting for IBM in the 9o’s, when it introduced the IBM PS 2E (for Energy & Environmental), a CES best-of-show winner in part because of its snap-together modular design. While today’s thin-profile-at-all-costs PC and laptop designs have made user-friendly upgrades a distant memory, one of the things that appealed to me about this design was the realization that if you could keep users satisfied that they were on top of  new developments by incremental substitution of new modules, they’d be more loyal and less likely to explore other providers.

In the same vein, as GE has found, the rapid feedback can dramatically speed upgrades and new features. That’s important for loyalty: if you maintain a continuing interaction with the customer and anticipate their demands for new features, they’ll have less reason to go on the open market and evaluate all of your competitors’ products when they do want to move up.

 

Equally important for customer loyalty is the new marketing options that the continuous flow of real-time operating data offer you. For a growing number of companies, that means they’re no longer selling products, but leasing them, with the price based on actual customer usage: if it ain’t bein’ used, it ain’t costing them anything and it ain’t bringing you any revenue!

Examples include:

  • jet turbines which, because of the real-time data flow, can be marketed on the basis of thrust generated: if it’s sitting on the ground, the leasee doesn’t pay.  The same real-time data flow allows the manufacturer to schedule predictive maintenance at the earliest sign of a problem, reducing both its cost and the impact on the customer.
  • Siemens’s Mobility Services, which add in features such as 3-D manufactured spare parts that speed maintenance and reduced costs, keeping the trains running.
  • Philips’s lighting services, which are billed on the basis of use, not sold.
  • SAP’s prototype smart vending machine, which (if you opt in) may offer you a special discount based on your past purchasing habits.

At its most extreme is Caterpillar’s Reman process, where the company takes back and remanufactures old products, giving them a new life — and creating new revenues — when competitors’ products are in the landfill.

Loyalty can also be a benefit of IoT strategies for manufacturers’ own operations as well. Remember that the technological obstacles to instant sharing of real-time data have been eliminted for the supply chain as well. If you choose to share it, your resupply programs can also be automatically triggered on a M2M basis, giving an inherent advantage to the domestic supplier who can get the needed part there in a few hours, versua the low-cost supplier abroad who may take weeks to reach your loading dock.

It may be harder to quantify than quality improvements or streamlined production through the IoT, but that doesn’t mean that dependable revenue streams from loyal customers aren’t an important potential benefit as well.

Distributed Manufacturing by 3D Printing Revolution for IoT Comes of Age!

Two major developments in the 3-D printing world, from Fictiv and (who woulda thunk it!) UPS, make me think the time has come for “distributing manufacturing” and getting away from the old massive, manufacturing mentality exemplified by Ford’s River Rouge plant.

OK, first a confession and a little history. Being short & named David, I’ve always had a fascination with David & Goliath, and you can bet who I’d root for. I also was deeply touched by two visionaries in my past:

  • Steve Clay-Young, who used to run the workshop at the old Boston Architectural Center & turned me on to a neat, nearly-forgotten bit of WWII history: either Popular Science or Popular Mechanix (can’t remember which), organized a network of hobbyists with metal lathes, who played a major role in the war effort. The magazine published plans for turning metal for munitions, and these guys each worked in their workshops to make them.
  • Eric Drexler, the nano-tech guru, spoke at the Eco-Tech conference in the ’90s about his vision of a bread-box-size gizmo on your kitchen counter that would churn out all sorts of customized products for you.

Now, it’s all taking place, and I suspect 3D printing will be a crucial element in the IoT-based transformation of the economy.

 

                                   Fictiv distributed manufacturing model

Fictiv is a startup founded to “democratize manufacturing,” which just went public with its new “distributed manufacturing” service using a nationwide network of 3D high quality printers and CNC machines:

 

“We route parts to machine with open capacity so you don’t wait 5 days for a part that takes 5 hours…. We aggregate orders so every customer receives the benefits of large purchasing power….”

Perhaps coolest, “Parts are produced as close to customers as possible to reduce inefficiencies in logistics and shipping lead-time”  so that (for an extra charge) they’re fabricated and delivered in 24 hours, and otherwise delivered in two days.  I suspect that, just as having sensors on their products that results in real-time feedback allowing GE to compress the design cycle, especially upgrades, that this proximity and quick turn-around will allow designers to radically alter the design process by “failing rapidly,” just the way early spread-sheet software allowed business managers to do “what-if” hypotheticals for the first time.

By bundling orders, they give startups the bargaining power of large companies.As co-founder Dave Evans, an experienced product design pro, says, distributed, local manufacturing can even the playing field for smaller companies, especially startups just designing their first products:

“When ordering from a large manufacturing company, parts need to navigate through their complex system and then be shipped from the machine warehouse direct to the customer, increasing lead times.

From an engineer’s perspective, when you’re in the prototyping and ideation stages, time is everything and even a 1-2 day loss from a 3PL (third-party logistics player) matters significantly.

What’s important to consider here is that in manufacturing, things can and will go wrong. So when remote manufacturers inevitably have to manage errors, there’s a lot of complexity to deal with …. This is very evident in overseas mass manufacturing, which is why companies put engineers as close to the source as possible. It’s amazing how few companies consider the same principles during the early prototyping stages of a product when time is everything.

The beauty in working with smaller, local manufacturers on the other hand, is that parts can be picked up as soon as they’re ready or delivered via same-day courier, saving you the 1-2 days of shipping. In addition, if things go wrong (they always do), smaller shops have more agility, fewer organizational layers, and in general can respond more quickly compared with their larger counterparts.”

              3D printing at The UPS Store

Equally important is the continuing stream of 3D services being offered by UPS. which recently announced a nationwide on-demand 3D printing network.  The network will combine 3D printers at more than 60 The UPS Stores® and Fast Radius’ On Demand Production Platform™ and 3D printing factory in Louisville, KY. My friends at SAP will marry its SAP’s extended supply chain solutions will be integrated with the UPS 3D network and — most important — its global logistics network “to simplify the industrial manufacturing process from digitization, certification, order-to-manufacturing and delivery.”

If I’m correct, the UPS network will concentrate on prototyping at this point, but it’s easy to see that it could soon have a dramatic impact on the replacement parts industry. Why should the manufacturer warehouse a large supply of spare parts, just because they might be needed, when they could instead simply transmit the part’s digital file to the nearest UPS 3D printer, generate the part, and use UPS to deliver it in a fraction of the time.

Combine that with the predictive maintenance possible with feedback from sensors on products, and you truly have a revolution in product design and maintenance as well as manufacturing. It would also foster the IoT-based circular company vision that I’ve been pushing, because supply chain, manufacturing, distribution, and maintenance would all be linked in a great circle.

Sweet!

 

 

comments: Comments Off on Distributed Manufacturing by 3D Printing Revolution for IoT Comes of Age! tags: , , , , , , , , , ,

Live Blogging from SAP’s SCM CRM IoT 2016 – Day 2

Greg Gorbach, ARC Advisory Group, Industrial Internet of Things:

  • ARC is an analyst firm, in Boston.
  • new service models
  • new products
  • new production techniques
  • new business processes
  • new competitors
  • new partners
  • new workers
  • new business opportunities.
  • innovation improves competitiveness: value-based competitiveness raises value of output.
  • Drivers:
    • reduced machine or asset downtime
    • more rapid service response
    • improved process performance
    • improved personnel productivity
    • reduced machine or asset lifecycle costs
    • improved asset utilization/RoA
    • opportunity for business innovation
    • ability to sell products as a service
  • manufacturing momentum for digital transformation: factors include 3D printing, IoT technologies, changing economies of scale, new service models
  • goal is digital transformation
  • software transitioning from monolithic to microservices

Richard Howells, SAP:

  • IoT is all about re-imaging things:business process, customer experiences
  • SAP solutions for IoT
    • SAP Connected Assets
    • SAP Connected Manufacturing
    • SAP Network Logistics Hub
    • SAP Augmented Reality Solutions
  • SAP Predictive Maintenance and Service: leverage operational insights to drive innovation & new business models
    • Deere putting sensors everywhere, doing predictive maintenance of tractors. In some cases, leasing instead of selling, so they have incentive to keep it operating.
    • Kaeser Compressors
    • Asset Intelligence Network
    • Connective Manufacturing: leveraging big data to drive new insights into operations.
      • Example of Harley Plant in York, Pa.  Many new design options (1,700 options), but do 25% more bikes with 30% fewer people. Went from 21 days for a custom cycle top 6 hours.
      • Pepsi: improving asset utilization with SAP Connected Manufacturing: collect all downtime and loss data in real time.  Went from 65 to 85% asset use.
    • SAP Networked Logistics Hub
    • SAP AR Warehouse Picker
    • SAP AR Service Technician

Where is IoT going??

  • 68% of companies see IoT being strategic or transformational to their business.
  • 78% plan to invest in IoT  in next 24 mo. — 24% already have.
  • Increasing productivity and improving customer experience are top business benefits
  • Challenges to deploying IoT include unclear ROI, lack of industry standards, costs, and data security.

 

Next was my presentation on “Getting Started With the IoT,” in which I emphasized that companies that have hung back from the IoT are still in the majority, but had better heed John Chambers’ warning that they’ll be toast in just a few years if they don’t start now.  I emphasized that an ideal early focus is to build the efficiency or “precision” of your existing operations, and to build operating safety (especially in inherently dangerous settings such as construction sites), then move on to more radical transformation.  I cited GE’s rather modest goal (I think they’re understating it, based on their own internal results) of a 1% increase in productivity for the IoT as something that most companies could achieve, and then talked about GE’s Brilliant Factories as a model for increasing operating efficiency, zeroing in on my favorite example, the Durathon Battery plant, where a sensor on every battery and 10,000 on the assembly line give them tremendous flexibility to cope with differing situations and to increase efficiency.  Finally, I suggested that the companies begin to rethink the role of their products and to begin considering the “circular enterprise” vision I’ve articulated as they look to the future.


 

Kris Gorrepati, SAP “IoT: from Big Data to Smart Data to Outcomes.”

  • OK, I’d never heard of a Brontobyte before…
  • “IoT relevant to all industries.” Agreed.
  • Amazon Dash service (Whirlpool now building it in!)
  • Uses same curve that other SAP guys do: from connect to transform to reimagine (latter being empowering new biz models, value-added products and services.
  • HANA Cloud Platform for the IoT.
comments: Comments Off on Live Blogging from SAP’s SCM CRM IoT 2016 – Day 2 tags: , , , , , ,

Digital Twins: the Ultimate in Internet of Things Real-Time Monitoring

Get ready for the age when every product will have a “digital twin” back at the manufacturer, a perfect copy of not just the product as it left the factory floor, but as it is functioning in the field right now. That will be yet another IoT game-changer in terms of my 4th IoT Essential Truth, “rethink products.”

Oh, and did I forget to mention that we’ll each have a personal body twin from birth, to improve our health?

For the first time we’ll really understand products, how they work, what’s needed to improve them, and even how they may be tweaked once they’re thousands of miles from the factory, to add new features, fix problems, and/or optimize efficiency.

Key to circular organizations

Even better, the twin can play a critical role in accomplishing my vision of new circular organizations (replacing obsolete hierarchies and linear processes), in which all relevant departments and functions (and even supply chain members, distribution networks and customers, where relevant) form a continuous circle with real-time IoT data as the hub).  Think of the twin as one of those manifestations of the real-time data to which all departments will have simultaneous access.

GE Digital Twin visualization

               GE Digital Twin visualization

I’ve often remarked how incredible it was that companies (especially manufacturers) were able to function as well as they did and produce products as functional as they were despite the inability to peek inside them and really understand their operations and/or problems. Bravo, industrial pioneers!

However, that’s no longer good enough, and that’s where digital twins come in.  In a WSJ blog post this week, General Electric’s William Ruh, my fav IoT visionary/pragmatist, talked about how the company, as part of its “Industrial Internet” transformation, is making digital twins a key tool:

“Every product out there will have one, and there will be an ability to connect a system, or systems of digital twins, easily. The digital twin is a model of an asset, a product such as a jet engine or a model of the blades in a jet engine. Sensors on those blades pull the data off and feed them into the digital twin. The digital twin is kept current with the data that is run off the sensors. It is in sync with the reality of the blade. Now we can ask what is the best time to change the blade, how the blade performs, options to get greater efficiency.”

Proof of the pudding?

Ruh says they’ve created a wind turbine and twin they call the “Digital Windfarm,” which generates 20% more electricity than a nearby conventional turbine.

PTC is also working on digital twins. According to the company’s Executive VP for Digital Twin, Mike Campbell,:  “It’s a model that uniquely represents a physical occurrence in the real world. This one-­to­one mapping is important. You create a relationship between the digital data and a unique product occurrence from a variety of sources: sensors, enterprise data on how it was made, what its configuration was, its geometry, how it is being used, and how it is being serviced.”

Predix

The key to digital twins is GE’s “Predix” predictive analytics software platform, which the company is extending across its entire product line. As always, the key is a constant stream of real-time data:

“weather, component messages, service reports, performance of similar models in GE’s fleets—a predictive model is built and the data collected is turned into actionable insights. This model can perform advanced planning, such as forecasting a ‘plan of the day’ for turbine operation, determining a highly efficient strategy to execute planned maintenance activities, and providing warnings about upcoming unplanned maintenance events, all of which ultimately generates more output and revenue for the customer.”

Digital doppelgängers

Here’s where the really sci-fi part kicks in: Ruh also predicts (Predix??, LOL) that GE’s medical division will soon create digital twins for you and me — at birth!

“I believe we will have a digital twin at birth, and it will take data off of the sensors everybody is running, and that digital twin will predict things for us about disease and cancer and other things. I believe we will end up with health care being the ultimate digital twin. Without it, I believe we will have data but with no outcome, or value.”

And, frankly, there’s also a spooky aspect to what GE’s doing, working with retailers to create psychographic models of customers based on their buying preferences. I’m dubious on that account: I do appreciate some suggestion about what might interest me, especially books, based on my past purchases. On the other hand, a couple of weeks I shopped for — but didn’t buy — biz cards online. Now, I get AdSense ads for these cards everywhere — even on this homepage (sorry for stuff that isn’t IoT, dear reader) Get over it, OK? Count me out when it get’s down to really granular psychographic profiles — too many risks with privacy and security.

I suspect digital twins will become a staple of the IoT, yielding critical real-time info on product status that will enable predictive maintenance and, as Ruh has written elsewhere, speeding the product upgrade process because, for the first time, designers will know exactly how the products are functioning in the field, as opposed to the total lack of information that used to be the norm. Stay tuned.

comments: Comments Off on Digital Twins: the Ultimate in Internet of Things Real-Time Monitoring tags: , , , ,

Day 2, Live Blogging from SAP’s IoT2016 Internet of Things Event

I’m up first this morning, & hope to lift attendees’ vision of what can be achieved with the Internet of Things: sure, cool devices and greater efficiency are great, but there’s so much more: how about total transformation of businesses and the economy, to make them more creative, precise, and even environmentally sustainable?

I’ve just revised my 4 IoT Essential Truths, the heart of my presentation, bumping make privacy and security the highest priority from number 4 to number 1 because of the factors I cited last week. I’ll draw on my background in crisis management to explain to the engineers in attendance, who I’ve found have a problem with accepting fear because it isn’t fact-based, how losing public trust could kill the IoT Golden Goose.

I’ll go on to explain the three other Essential Truths:

  • Share Data (instead of hoarding it, as in the past)
  • Close the Loop (feed that data back so there are no loose ends, and devices become self-regulating
  • Rethink Products so they will contain sensors to feed back data about the products’ real-time status, and/or can now be marketed not as products that are simply sold, but services that both provide additional benefits to customers while also creating new revenue streams for the manufacturer.

I’ll stress that these aren’t just truisms, but really difficult paradigm shifts to accomplish. They’re worth it, however, because making these changes a reality will allow us to leave behind old hierarchical and linear organizational structures that made sense in an age of limited and hard-t0-share data. Instead, we can follow the lead of W.L. Gore and its cyclical “lattice management,” in which — for the first time — everyone can get the real-time data they need to do their jobs better and make better decisions. Equally important, everyone can share this data in real time, breaking down information silos and encouraging collaboration, both within a company and with its supply chain and distribution network — and even with customers.

Amen.


Back with Michael Lynch of SAP!

  • we can change the world and enhance our understanding greater than ever.
  • can help us solve global warming.
  • great case study on heavy truck predictive maintenance in GoldCorp Canadian gold mines.
  • IoT maturity curve:
  • Critical question: who are you in a connected future?  Can lead to re-imaginging your corporate role.
  • UnderArmour is now embedding monitors into clothing.
  • Tennant makes cleaning equipment. Big problem with lost machines, now can find them quickly.
  • Asset Intelligence Network — Facebook for heavy equipment — SAP will launch soon.
  • example of a tractor company that’s moving to a “solutions-based enterprise.” What is the smallest increment of what you do that you could charge customer. Like the turbine companies charging for thrust.

SAP strategy:

  • “Our solution strategy is to grow by IoT-enabling core industry, and providing next generation solutions for millions of human users, while expanding our platform market by adding devices.”
  • they have an amazing next-gen. digital platform. More data flow through there than Alibaba & Amazon!
  • CenterPoint Energy — correlating all sorts of data such as smart meter & weather. Better forecasting.
  • Doing a new home-based diabetes monitoring system with Roche.
  • Doing a lot of predictive maintenance.
  • Connected mining.
  • Building blocks:
    • Connect (SAP IoT Starter Kit)
    • Transform
    • Re-imagine

Ending the day with my presentation on first steps for companies to take in beginning an IoT strategy, with special emphasis on applying analytical tools such as HANA to your current operations, and building “precision operations” by giving everyone who needs it real-time data to improve their job performance and decision-making. Much of the presentation will focus on GE, with its “Brilliant Factories” initiative!

Testing the IoT Waters: 1st Steps in Creating an IoT Corporate Strategy

What if you’re interested in the Internet of Things, but are a little scared of making a major commitment and making major expenditures until you build your familiarity level and start to enjoy some tangible results?

That concern is understandable, especially when prognosticators such as I emphasize what a transformational impact the IoT will have on every aspect of your operations and strategy.

So where to begin?

I’ll speak on this issue at SAP’s  IoT 2016 Conference, Feb. 16-19, in Las Vegas, and hope you can attend. But, if not, or if a teaser might convince you to make the plunge, here’s a summary of my major points, which I hope will motivate you to act sooner, rather than later!

Managing_the_Internet_of_Things_RevolutionThis is an issue that I first visited with my “Managing the Internet of Things Revolution” e-guide to IoT strategy for C-level executives, which I wrote in 2014 for SAP, and which has been successful enough that they’ve translated it into eight languages.

I suggested that the best reason to begin now on creating and executing an IoT strategy was that a lot of the requisite tools for an IoT strategy were also critical to optimize your current operations:

  • invest now in analytical tools (such as SAP’s HANA!), so that you can make sense of the rapidly-expanding amount of data (especially unstructured data) that you are already collecting, with new benefits including predictive analytics that allow you to better predict the future.
  • even before capital equipment is redesigned to incorporate sensors that will yield 24/7 real-time data on their operations and status, consider add-on sensors where available, so you can take the guesswork out of operations.
  • where possible, process sensor data “at the edge,” so that only the relevant data will be conveyed to your processing hub, reducing storage and central processing demands.
  • develop or contract for cloud storage, to handle vastly increased data.
GE Brilliant Factory benefits

GE Brilliant Factory benefits

As I’ll explain my speech, even without launching any major IoT projects such as product redesign or converting products into services, initial IoT projects such as these will dramatically boost your profits and efficiency by allowing unprecedented precision in operations.  I’ll emphasize the example of GE, whose “Brilliant Factory” initiative is aimed at increasing both its own manufacturing efficiency and its customers’ as well. They make a modest, but astonishing claim:

“GE estimates that a 1% improvement in its productivity across its global manufacturing base translates to $500 million in annual savings. Worldwide, GE thinks a 1% improvement in industrial productivity could add $10 trillion to $15 trillion to worldwide GDP over the next 15 years.”

Remember: that’s not exploiting the full potential of the IoT, but simply using it to boost operating efficiency. I see this as bringing about an era of “Precision Manufacturing,” because everyone who needs real-time data about the assembly line and production machinery will be able to share it instantly — including not only all departments within your company but also your supply chain and your distribution network.

In many cases, resupply will be automatic, through M2M processes where data from the assembly line will automatically trigger supply re-orders (and may lead to reshoring of jobs, because the advantages of true “just-in-time” delivery of parts from a supplier located a few miles away will outweigh the benefits of using one on the other side of the world, where delivery times are measured in weeks).  Instead of the current linear progression from supply chain to factory floor to distribution network, we’ll have a continuous loop uniting all of those components, with real-time IoT data as the “hub.”

Again, without making a full-fledged commitment to the IoT, another benefit that I’ll detail is how you’ll be able to dramatically improve workplace safety, especially inherently chaotic and fast-changing worksites such as construction projects and harbors, whose common elements include unpredictable schedules, many companies and contractors, many workers, and many vehicles — a recipe for disaster given current conditions!  However, the combination of simply putting location sensors on the equipment, vehicle, and people can radically decrease the risk. For example,  in Dubai — home to 25% of all construction cranes in the world — SAP partnered with a worldwide leader in construction site safety, SK Solutions. Sensors are located on machinery throughout every site, reporting real-time details about every activity: machinery’s position, movement, weight, and inertia and critical data from other sources (as with the GE Durathon factory’s use of weather data), including wind speed and direction, temperature, and more. Managers can detect potential collisions, and an auto-pilot makes instant adjustments to eliminate operator errors. “The information is delivered on dashboards and mobile devices, visualized with live 3-D images with customizable views.”

As I’ll tell the conference attendees,

“Equally incredible is the change at the Port of Hamburg, Germany’s biggest port, which must juggle 9 million containers and 12,000 vessels a year, not to mention a huge number of trucks and trains. You can imagine the potential for snarls and accidents. Since installing HANA, all of these components, including the drivers and other operators, are linked in real time.  Average waiting time for each truckload has been cut 5 minutes,  and there are 5,000 fewer truck hours daily. The coordination has gotten so precise that, if a trucker will be held up by a bridge opening, the nearby coffee shop will send a discount coupon to his iPad.”

I’ll conclude by mentioning a couple of the long-term components of an IoT strategy, such as redesigning products so that they can be controlled by apps and/or feedback constant information on their status, and considering whether to market products instead as services, where the customer only pays for the products when they’re actually being used, and creating optional data services that customers may choose to buy because they’ll allow the customer to optimize operating efficiency.

But the latter are the long-term challenges and benefits.  For now, I’ll tell the audience that the important thing is to begin now investing in the analytical tools and sensors that will help them boost efficiency.

Hope you can be there!


Oh yeah. Why get started on your IoT strategy now, rather than wait a few more years? Last year, former Cisco Chairman John Chambers said that 40% of the companies attending a recent seminar wouldn’t survive in a “meaningful way” within 10 years if they don’t begin now to embrace the IoT. Sobering, huh?

Why Am I Not Surprised? GE Does It Again As IoT Innovator

POST-SCRIPT : LATE-BREAKING NEWS: GE WILL ANNOUNCE TOMORROW THAT THEY’RE MOVING THEIR WORLD HEADQUARTERS TO BOSTON.  EVEN THOUGH THE HEART OF THE COMPANY’S INDUSTRIAL INTERNET STRATEGY WILL REMAIN ITS SOFTWARE CENTER IN SILICON VALLEY, THIS SHOULD INEVITABLY BOOST BOSTON’S STATURE IN THE IoT: WE’RE ALREADY RANKED 4TH IN THE WORLD.


PROMINENT DISCLAIMER: I AM NOT ON THE GENERAL ELECTRIC PAYROLL, AS AMAZING AS THAT MAY SEEM CONSIDERING ALL THE NICE THINGS I SAY ABOUT THEM.

C by GE smart bulbs

Whether it’s their incredible Durathon battery plant or the 220-ton computer-on-wheels Evolution loco, I don’t think there’s any major company that gets it more about the IoT, or, as they brand it, the Industrial Internet. As I’ve said before, it’s not just IoT products, but also “IoT Thinking” (collaboration, closing the loop, etc.) on their part. So why am I not surprised that they’ve gone back to their roots and come up with the most practical smart bulb so far, the “C by GE” bulbs?

Surely the Wizard of Menlo Park is smiling down on them for this one!

This is not to take away from the pioneering Philips Hue bulbs (16 million colors? You kidding?), or the neat Playbulb ones that double as speakers, but it seems to me these are the ones so far (possible exception, the $15 Cree ones — although I’ve not been happy with short life-span of my earlier Cree LEDs….) but these seem to me to combine some kewl new features that weren’t available before smart bulbs with affordability: a kit of 4 will be priced at $50 if you order online.

So what’s the big deal? Unlike the HUEs and GE’s earlier Link LED, these won’t require linking to a hub to control them: they link to your phone directly, using Bluetooth.

The bulbs will come in two flavors, to start with: a plain-vanilla dimmable one for most rooms of the house, and the spiffy “C Sleeps” for the bedroom, which will allow you to choose three different color hues, including a bright white to energize yourself on waking, a middling one for most of the day, and a yellowish one that research has shown to be more sleep-inducing, for night time (for you wonks, here’s the science).

Equally important, according to C|NET, they’ll also be more affordable than other multi-hue bulbs:

“The C Sleep LEDs won’t be the first color-tunable smart LEDs on the market, but they’ll certainly be some of the most affordable. The Osram Lightify Starter Kit comes with just a single bulb and costs $60, while the Lifx White 800 LED costs $40. With two color-tunable bulbs plus two standard smart bulbs for $50, C by GE definitely looks like the better value. What’s more, GE is promising limited early-bird pricing that will bring the cost of a starter pack down to $40 for those willing to buy in at launch.”

Because it’s Bluetooth controlled you won’t be able to control it from outside the house, so I’m gonna have to stick with my WeMo sockets to make my wife happy, but supposedly it will work with the Apple HomeKit (“Siri, it’s time for bed”) or if you already have a Wink hub.

Once again, Thanks, Jeff Immelt!

PS: $1.92 a yr. in electric costs: they’ll help save the planet as well

 

The IoT Will Reinvent Replacement Parts Industry

Of all the Internet of Things’ revolutionary impacts on industry, perhaps none will be as dramatic as on replacement parts, where it will team with 3-D printing to reduce service time, inventory and costs.

I came to that realization circuitously, upon noticing Warren Buffett’s blockbuster purchase of Precision Castparts, the major precision parts supplier to the aeronautics industry.  Having read last year about yet another breakthrough innovation by Elon Musk, i.e., the first totally 3-D printed rocket engines, I was curious to see what Precision was doing in that area.  Unless my search of their website was flawed, the answer is zip, and that suggests to me that Buffett, who famously once said he doesn’t invest in technology because he doesn’t understand it, may have just bought …. a rather large dinosaur.

I noticed that one of Precision’s biggest customers is GE, which not only is using 3-D jet fuel nozzles on its engines but also ran a high-profile contest to design a 3-D printed engine mount that was open to you, me and the kids trying out the new 3-D printer at our little town’s library (note to Mr. Buffett: might be good to schedule a sit-down with Jeff Immelt before one of your biggest customers takes things in-house). As I’ve written before, not only is GE a world leader in the IoT and 3-D printing, but also in my third magic bullet, nanotech: put all three together, and you’re really talking revolution!

OK, I know 3-D printing is sloow (in its current state), so it’s unlikely to replace traditional assembly lines at places such as Precision Castparts for large volumes of parts, but that doesn’t mean it won’t rapidly replace them in the replacement parts area.  I talked to a friend several years ago whose biz consists of being a broker between power plants that need replacement parts yesterday and others with an excess on hand, and couldn’t help thinking his days were numbered, because it was predicated on obsolete technology — and thinking.

Think of how the combined strengths of the IoT and 3-D printing can help a wide range of industries get replacement parts when and where they need them, and at potentially lower cost:

  • sensors in IoT-enabled devices will give advance notice of issues such as metal fatigue, so that repairs can be done sooner (“predictive maintenance“), with less disruption to normal routine, cheaper and reducing the chance of catastrophic failure.
  • because data can be shared on a real-time by not only your entire workforce, but also your supply chain, you can automate ordering of replacement parts.
  • perhaps most important, instead of a supplier having to maintain a huge inventory of replacement parts on the possibility they may be needed, they can instead be produced only when needed, or at least with a limited inventory (such as replacing a part in inventory as one is ordered). This may lead to “re-shoring” of jobs, because you will no longer have to deal with a supplier on the other side of the globe: it might be in the next town, and the part could be delivered as soon as printed, saving both delay and money.
  • your company may have your own printer, and you will simply pay the OEM for the digital file to print a part in-house, rather than having to deal with shipping, etc.

And, as I mentioned in the  earlier post about GE’s leadership in this area, there are other benefits as well:

  • “We’ll no longer do subtractive processes, where a rough item is progressively refined until it is usable.  Instead, products will be built atom-by-atom, in additive processes where they will emerge exactly in the form they’re sold.
  • “Products will increasingly be customized to the customer’s exact specifications. The products will be further fine-tuned based on a constant flow of data from the field about how customers actually use them.”

Sooo, Mr. Buffett, it’s time that you come to terms with 21-st century technology or Berkshire Hathaway’s financial slide may continue.

 

comments: Comments Off on The IoT Will Reinvent Replacement Parts Industry tags: , , , , , , , , , , , ,

GE & IBM make it official: IoT is here & now & you ignore it at your own risk!

Pardon my absence while doing the annual IRS dance.

While I was preoccupied, GE and IBM put the last nail in the coffin of those who are waiting to launch IoT initiatives and revise their strategy until the Internet of Things is more ….. (supply your favorite dismissive wishy-washy adjective here).

It’s official: the IoT is here, substantive, and profitable.

Deal with it.

To wit:

The two blue-chips’ moves were decisive and unambiguous. If you aren’t following suit, you’re in trouble.

The companies accompanied these bold strategic moves with targeted ones that illustrate how they plan to transform their companies and services based on the IoT and related technologies such as 3-D printing and Big Data:

  • GE, which has become a leader in 3-D printing, announced its first FAA-approved 3-D jet engine part, housing a jet’s compressor inlet temperature sensor. Sensors and 3-D printing: a killer combination.
  • IBM, commercializing its gee-whiz Watson big data processing system, launched Watson Health in conjunction with Apple and Johnson & Johnson, calling it “our moonshot” in health care, hoping to transform the industry.  Chair Ginny Rometty said that:

“The Watson Health Cloud platform will ‘enable secure access to individualized insights and a more complete picture of the many factors that can affect people’s health,’ IBM says each person generates one million gigabytes of health-related data across his or her lifetime, the equivalent of more than 300 million books.”

There can no longer be any doubt that the Internet of Things is a here-and-now reality. What is your company doing to catch up to the leaders and share in the benefits?

 

comments: Comments Off on GE & IBM make it official: IoT is here & now & you ignore it at your own risk! tags: , , , , , , , , ,
http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management