Eureka! MYLE TAP: Nice Example of IoT Letting You Do Something You Couldn’t

I like to occasionally feature products that aren’t earth-shaking in their own right (such as the cameleon shoes that can change their appearance with the swipe of an app) , but nicely illustrate one of my IoT acid tests: what can you do that you couldn’t do before?

I love those, because they can get our creative juices boiling to think of other unprecedented IoT devices.

The MYLE TAP Thought Recorder

Here’s a nice example that I suspect may itself facilitate a lot of “Archimedes Moments” (just coined that one, LOL), where IoT users will leap from their baths and run nude through the streets, shrieking “Eureka,” because of their sudden insights into some great new IoT device (actually not sure of that image.  Are IoT enthusiasts slim and attractive?),

One little factoid really makes this one come alive: “the average person generates over 70,000 thoughts a day.” Now that’s a staggering unstructured data challenge!

Might be of particular interest, Dear Readers, to those of us on the far side of 50 who have a ton of great ideas but, how shall we say this delicately, don’t always remember them 15 minutes later).

At any rate, the crowd-funded ($83,707 raised so far, by 755 people in 15 days, compared to a $50,000 goal. As of this writing the campaign goes for 16 more days, so you can still get in on the ground-floor.) MYLE TAP will allow users to effortlessly record their thoughts in real-time (which, BTW, is a crucial element in how the IoT really transforms everything: instead of limited data, obtained retroactively, we can get limitless data now, when we can still act on it).

To activate the attractive device you simply tap it.  It understands 42 languages right out of the box!

There are some really neat components of the device that could really make your life a lot simpler because you can speak what you want to record (I don’t know about you, but the more I learn about the powers of Siri and her friends, the more I think voice-interface is really the way to go in the future, especially for tech-averse seniors, the targets of my Smart Aging concept). As the site says, “your saved notes are analyzed by context to generate you meaningful results via smartphone applications.” Here are the first uses:

  • Calorie Counter: “’I had one Caesar salad and one big apple.’ MYLE calculates how many calories you have consumed.”
  • Budget & Spending: “’Spent $7 on coffee and $40 on gas’, and MYLE enters it into your personal and business expense tracker.”  IMHO, this could be a REAL value!
  • Grocery List: “Tell MYLE ‘buy eggs, milk, flour,’ Your shopping list is built automatically.”
  • Calendar: “Tell MYLE ‘Pick Sophia up from school at four,’ and a new item is added to your calendar.”
  • Social Media: “Share your memorable event or experience. One tap can post can post it on your Facebook or Twitter account.”
  • Exercise: “Excercise with your MYLE TAP. Build and keep records of your progress.”

I can already do a lot of these things with my iPhone and Apple Watch, and perhaps the Watch will eventually do all these things once developers have created new apps, but I like the idea of a single, snazzy-looking device that can do all of them. And, smart people that they are, the MYLE developers have developed an open SDK and API. Once the IFTTT community gets hold of it, they’ll come up with ideas to extend the device’s utility that the MYLE folks never would have conceived of!

The MYLE TAP — doing something that we couldn’t do before!


 

Here are the technical details, courtesy of Atmel:

“Based on an Atmel | SMART SAM4S MCU, the super compact and lightweight gadget is equipped with an accelerometer, a Bluetooth Low Energy module, a few LEDs and a built-in battery capable of running up to a week on a single charge. MYLE TAP boasts some impressive memory as well, with a storage capacity of up to 2,000 voice notes.”

 

comments: Comments Off on Eureka! MYLE TAP: Nice Example of IoT Letting You Do Something You Couldn’t tags: , , , , ,

McKinsey IoT Report Nails It: Interoperability is Key!

I’ll be posting on various aspects of McKinsey’s new “The Internet of Things: Mapping the Value Beyond the Hype” report for quite some time.

First of all, it’s big: 148 pages in the online edition, making it the longest IoT analysis I’ve seen! Second, it’s exhaustive and insightful. Third, as with several other IoT landmarks, such as Google’s purchase of Nest and GE’s divestiture of its non-industrial internet division, the fact that a leading consulting firm would put such an emphasis on the IoT has tremendous symbolic importance.

McKinsey report — The IoT: Mapping the Value Beyond the Hype

My favorite finding:

“Interoperability is critical to maximizing the value of the Internet of Things. On average, 40 percent of the total value that can be unlocked requires different IoT systems to work together. Without these benefits, the maximum value of the applications we size would be only about $7 trillion per year in 2025, rather than $11.1 trillion.” (my emphasis)

This goes along with my most basic IoT Essential Truth, “share data.”  I’ve been preaching this mantra since my 2011 book, Data Dynamite (which, if I may toot my own horn, I believe remains the only book to focus on the sweeping benefits of a paradigm shift from hoarding data to sharing it).

I was excited to see that the specific example they zeroed in on was offshore oil rigs, which I focused on in my op-ed on “real-time regulations,” because sharing the data from the rig’s sensors could both boost operating efficiency and reduce the chance of catastrophic failure. The paper points out that there can be 30,000 sensors on an rig, but most of them function in isolation, to monitor a single machine or system:

“Interoperability would significantly improve performance by combining sensor data from different machines and systems to provide decision makers with an integrated view of performance across an entire factory or oil rig. Our research shows that more than half of the potential issues that can be identified by predictive analysis in such environments require data from multiple IoT systems. Oil and gas experts interviewed for this research estimate that interoperability could improve the effectiveness of equipment maintenance in their industry by 100 to 200 percent.”

Yet, the researchers found that only about 1% of the rig data was being used, because it rarely was shared off the rig with other in the company and its ecosystem!

The section on interoperability goes on to talk about the benefits — and challenges — of linking sensor systems in examples such as urban traffic regulation, that could link not only data from stationary sensors and cameras, but also thousands of real-time feeds from individual cars and trucks, parking meters — and even non-traffic data that could have a huge impact on performance, such as weather forecasts.  

While more work needs to be done on the technical side to increase the ease of interoperability, either through the growing number of interface standards or middleware, it seems to me that a shift in management mindset is as critical as sensor and analysis technology to take advantage of this huge increase in data:

“A critical challenge is to use the flood of big data generated by IoT devices for prediction and optimization. Where IoT data are being used, they are often used only for anomaly detection or real-time control, rather than for optimization or prediction, which we know from our study of big data is where much additional value can be derived. For example, in manufacturing, an increasing number of machines are ‘wired,’ but this instrumentation is used primarily to control the tools or to send alarms when it detects something out of tolerance. The data from these tools are often not analyzed (or even collected in a place where they could be analyzed), even though the data could be used to optimize processes and head off disruptions.”

I urge you to download the whole report. I’ll blog more about it in coming weeks.

comments: Comments Off on McKinsey IoT Report Nails It: Interoperability is Key! tags: , , , , , , ,

Every IoT office needs this graphic on privacy and security

Long-time readers know that I frequently rant that privacy and security are Job 1 when it comes to the IoT.  

No apologies: it’s because I spent many years in corporate crisis management, and I learned the hard way that public trust is hard to earn, easy to lose, and, once lost, difficult or impossible to regain.

That’s why I was so glad to see this really informative, attractive, and scary infographic from Zora Lopez at Computer Science Zone, because it lays everything out so vividly.  Among the key points:

  1. (seen this before, but it still astounds me) In 2011, 20 typical households generated as much data as the entire Internet did as recently as 2008.
  2. the number of really-large (on scale of e-Bay, Target, etc.) data thefts grow annually.
  3. the bad guys particularly go after extremely sensitive data such as health, identity and financial.

It concludes with a particularly sobering reminder (you may remember my comment on the enthusiastic guys who presented at Wearables + Things and cheerfully commented that they would eventually get around to privacy and security — NOT!):

The barrier to entry in tech has never been lower, leaving many new organizations to later grapple with unsatisfactory security.” (my emphasis)

So: print a copy of the following for every employee and new hire, and put it on the cube’s wall immediately (here’s the original URL: http://www.computersciencezone.org/wp-content/uploads/2015/04/Security-and-the-Internet-of-Things.jpg#sthash.c6u2POMr.dpuf)

IoT Privacy and Security, from Computer Science Zone

comments: Comments Off on Every IoT office needs this graphic on privacy and security tags: , , , , , ,

Energy to Power the #IoT: it’s really just a matter of child’s play

Posted on 12th June 2015 in energy, environmental, Internet of Things, M2M, mobile, sensors, wearables

Saving the Earth from global warming is going to require reducing our use of fossil fuels, yet we keep coming up with new technologies, such as the Internet of Things, that will require even more energy. So how do we reconcile the two needs?

In part, through harvesting ambient energy, and, most cleverly, kinetic energy generated in the process of doing something else, from moving liquids through pipelines, wheels as vehicles move, or even as we humans move about in our daily lives.

As you’ll see from the examples below, there’s enough projects in the field that I’m confident a growing number of sensor networks will be powered through ambient energy in the future. Equally important, in the not-too-distant future we’ll laugh that we once plugged in our smartphone and watches to charge them, rather than harvesting the energy we generate every day simply by moving around.

I saw an incredible example at the recent Re-Work IoT Summit in Boston, courtesy of Jessica O. Matthews of Uncharted Play. By my calculations, Matthews’ own energy output would allow shutting down 2.3 nukes: before her session began, I saw this striking woman on the stage — Matthews –skipping rope.

In high heels!

Then the fun began. Or should I say, the energy production.

Matthews, an MIT grad, works largely in Africa, creating very clever playthings that — ta da! — harvest energy, such as the very cool Soccket ball shown in the video above (you can see here how it’s made).  It has a battery built in that’s charged by the large amount of kinetic energy created by kids on the playground who are just having fun.  At night, they take the ball home and, voila, plug a socket into the side of the ball and they have precious light to read by. How incredibly cool is that?

The Pulse jump rope powers two lights

Matthews’ jump rope (“The Pulse”)? The kinetic energy from that  powers TWO lights!

But there’s a lot of other neat stuff going on in terms of capturing kinetic energy that could also power IoT devices:

  • Texas Instruments has harvested energy to run sensors from changes in temperature, vibrations, wind and light.  I knew about harvesting the energy from pipeline vibrations, but hadn’t thought about getting it from the temperature differential between the interior of pipes carrying hot water and the outside air. TI says that yields a paltry 300-400 millivolts, but they’ve figured out how a DC-to-DC switching converter can increase it to 3-5 volts — enough to charge a battery.
  • TI is also researching how kinetic energy could charge your phone:”To power wearables, the company has demonstrated drawing energy from the human body by using harvesters the size of wristwatch straps.. It has worked with vibration collectors, for instance, about the same size as a key.”It’s possible that a smartwatch could use two harvested power sources, light and heat, from the body. These sources may not gather enough power to keep a smartwatch continuously operating without action by the user to charge it, but it may give the user’s device a lot more battery life.”
  • Perhaps most dramatically of all, as I reported before, there’s some incredible research on ambient energy underway at the University of Washington, where they use “ambient backscatter,” which: ‘…leverag[es] existing TV and cellular transmissions, rather than generating their own radio waves. This novel technique enables ubiquitous communication where devices can communicate among themselves at unprecedented scales and in locations that were previously inaccessible.’”

    PoWiFi, harvesting ambient energy

    Now, a member of that team,Vamsi Talla, has harvested energy from ambient wi-fi,  “PoWiFi,” as it’s called, to power a temperature sensor and to let a surveillance camera take a picture every 35 minutes (given how pervasive surveillance cameras are today, that could really be a godsend — or a nightmare, depending on your perspective). “For the experiment, hot-spots and routers were modified to broadcast noise when not being used for data transmission. This is because Wi-Fi signals are broadcast in bursts across different frequencies which makes the energy too intermittent to be useful.”  (TY 2 Jackie Bassett of  SealedSpeed for this one).

Bottom line: forget those charging pads that are starting to crop up. In the future, you’ll be powering your phone, and the very devices that sensors are monitoring will be powering them. A win for the IoT — and the environment!

PS: jury’s still out on whether we’ll all have to register with FERC as utilities….

comments: Comments Off on Energy to Power the #IoT: it’s really just a matter of child’s play tags: , , , , , , , ,

Intel’s IoT tech improves its own manufacturing efficiency

This demonstration IoT manufacturing project hits my buttons!

I love IoT-enabled manufacturing (what I call “precision manufacturing“) and I REALLY love companies (such as GE, at its Durathon battery plant) that eat their own dogfood by applying their IoT technology internally.  Gotta walk the talk!

 

That’s why I was happy to learn how Intel is  applied its own IoT technology to its own factories. In the accompanying video, Intel VP for IoT operations and group marketing Frank James says:

“The real opportunity is how to combine … data differently, which will ultimately give you insights not only into how your factory is running but, what’s more important, will let you predict how your factory will run the next minute, the next hour, the next shift, the next day.”

The pilot factory automation project is a collaboration with Mitsubishi Electric (more points for a key IoT “Essential Truth” — collaboration!).  The project, at Intel’s Malaysia manufacturing facility, combines two critical components, end-to-end IoT connectivity and big data analytics. The benefits were impressive: $9 million in cost avoidance and improved decision making, plus:

  • improved equipment uptime
  • increased yield and productivity
  • predictive maintenance
  • reduced component failures.

That hard-to-quantify improved decision making, BTW, is one of the things that doesn’t get enough discussion when we talk about IoT benefits: decision-making improves when there is more data to consider, more people to analyze and discuss it simultaneously (not sequentially, as in the past), and when you’ve got tools such as data dashboards to allow visualizing the data and its patterns.

The companies plan to roll out the services commercially this year.

Here are the specs:

“Using an Intel® Atom™ processor-based IoT gateway called the C Controller from Mitsubishi Electric’s iQ-Platform, Intel was able to securely gather and aggregate data for the analytics server. Data was then processed using Revolution R Enterprise* software from Revolution Analytics*, an analytics software solution that uses the open source R statistics language, which was hosted on Cloudera Enterprise*, the foundation of an enterprise data hub.”

 

comments: Comments Off on Intel’s IoT tech improves its own manufacturing efficiency tags: , , , ,

Exploiting full potential of iBeacons for Internet of Things

One of the most exciting aspects of the Internet of Things is seeing how, when more people are exposed to one of its technologies, they find uses for it that the inventors might not have visualized.  I give you … the iBeacon.

The Apple protocol (again, my obligatory disclaimer that I work part-time at an Apple Store, but have no inside information or any obligation to hype their tech) is used in Bluetooth low-energy transmitters (“beacons”) that broadcast their location to nearby devices so they can perform actions such as social-media check-ins or push notifications while near the beacon.  They’re most frequently used in marketing to offer targeted bargains, and primarily have been used by the biggest retailers and sites such as major-league ballparks, but, as you’ll see, not always.

At the Re-Work Internet of Things Summit I met two young entrepreneurs, Justin Mann and Ben Smith  of Beacons in Space, a Boston startup that would allow new apps to leverage existing installed iBeacons — typically installed by large retailers and closed to others —  instead of having to add more beacons in a given space. This would be done through a subscription model with a simple API on top of a beacon rental marketplace. It would allow smaller developers can scale their developments and projects without having to invest in a redundant iBeacon array.

But I was particularly interested in how some clever developers are applying iBeacons outside retail settings.

One is at the Zoom Torino Biopark in Cumiana, Italy. iBeacons around the zoo trigger an app including an interactive map that helps visitors move around the park by giving their exact location and showing where other attractions are located.

“As visitors discover the six different habitat environments of the park, they will be able to unlock specific details, facts and suggestions throughout their journey thanks to hidden Bluetooth transmitting beacons, which trigger relevant content on a visitor’s smartphone based on their location.

“Users will also benefit from alerts on their mobile device informing them of special events during their visit, like meeting animals or presentations. By engaging with the app, visiting certain locations within the park and answering quiz questions, visitors can also earn promotional items and discount coupons for use within the park.”

installing iBeacon on Bucharest trolley to guide visually-impaired

Best of all,  Romania is using them in a very clever system, The Smart Public Transport (SPT) solution, to give visually-impaired riders audio clues through their smartphone about Bucharest’s bus system, a joint project of the Smart Public Transport project and Romania’s RATB trolley buses. Onyx Beacon, a Romanian company, is installing 500 Beacons on the city’s most heavily used public transportation vehicles (the project, incidentally, was funded by Vodafone under its “Mobile for Good” program, encouraging use of technology for social programs and to solve specific problems of those with special personal needs).

All of these projects show the utility — provided there are privacy and security provisions built in, and the systems are opt-in, of iBeacons for giving hyper-localized information and offers. If the Beacons in Space concept takes off, to eliminate the need to deploy more iBeacons for every new app, the concept might really become an important part of the IoT, whether for retail or civic uses.

comments: Comments Off on Exploiting full potential of iBeacons for Internet of Things tags: , , , ,

Incredible example of rethinking “things” with Internet of Things

Ladies and gentlemen, I give you the epitome of the IoT-enabled product: the trash can!

My reader statistics do not indicate this blog has a heavy readership among trash cans, but let me apologize in advance to them for what I’m about to write: it’s not personal, just factual.

I’m sorry, but you municipal trash cans are pathetic!

Dented. Chipping paint. Trash overflowing. Smelly. Pests (ever seen any of those prize city rats? Big!!!) Sometime even knocked over. And, worst of all, you are so…. DUMB. You just sit there and don’t do anything.

BigBelly trash compactor and recycling center

But that was then, and this is now.

I have seen the future of trash cans, and, equally important, perhaps the best example I’ve seen of how smart designers and company strategists can –and must — totally rethink products’ design and how they are used because of the Internet of Things! 

At last week’s Re-Work Internet of Things Summit there were many exciting new IoT examples (I’ll blog others in coming weeks) but perhaps the one that got more people talking was the BigBelly trash compactor & recycling system, high-tech successor to the lowly trash can.

The company’s motto is that they are “transforming waste management practices and contributing to the Smart Cities of tomorrow.” Indeed!

I was first attracted to the BigBelly systems because of my alternative energy and environmental passions: they featured PV-powered trash compactors, which can quintuple the amount a trash container can hold, eliminating overflowing containers and the need to send trucks to empty them as frequently. Because the containers are closed, there’s no more ugly banana peels and McDonald’s wrappers assaulting your delicate eyes — or noses! Equally important, each is paired with a recycling container, which are almost never seen on city streets, dramatically reducing the amount of recyclables that go into regular trash simply because no recycling containers are accessible downtown.  These features alone would be a noteworthy advance compared to conventional trash cans.

But BigBelly wasn’t content to just improve the efficiency of trash and recyclable collection: they decided to make the containers smart.

The company worked with Digi to add wireless communications to the bins. This is a critical part of BigBelly’s broader significance: when the IoT first started to creep into corporate consciousness, of course designers thought about smart versions of high-value products such as cars, but lowly trash cans? That deserves real praise, because they fundamentally re-examined not only the product as it existed, but also realized that an IoT-based version that could also communicate real-time data would become much more versatile and much more valuable.

Here’s what has resulted so far (and I suspect that as the BigBellys are more widely deployed and both city administrators and others become aware of their increased functionality, other features will be added: I see them as “Smart City Hubs!”):

  • heatmap of trash generation in Lower Manhattan using real-time data from BigBellys and CLEAN dashboard

    instead of traditional pickup routes and schedules that were probably based on sheer proximity (or, as BigBelly puts it a little more colorfully, “muscle memory and gut instincts”), they now offer a real-time way to monitor actual waste generation, through the “CLEAN Management Console,” which allows DPW personnel to monitor and evaluate bins’ fullness, trends and historical analysis, for perspective. Collections can now be dynamic and driven by current needs, not historical patterns.

  • For those cities that opt for it, the company offers a Managed Services option where it does the analysis and management of the devices — not unlike the way jet turbine manufacturers now offer their customers value-added data that allows them to optimize performance — and generates new revenue streams for the manufacturers.
  • You may remember that I blogged a while ago about the “Collective Blindness” analogy: that, until the IoT, we humans simply couldn’t visualize much about the inner workings of the material world, so we were forced to do klugy work-arounds.  That’s not, strictly speaking, the case here, since trash in a conventional can is obviously visible, but the actual volume of trash was certainly invisible to those at headquarters. Now they can see — and really manage it.
  •  They can dramatically increase recycling programs’ participation rate and efficiency. As BigBelly says, the system provides “intelligent infrastructure to support ongoing operations and free up staffing and resources to support new and expanded recycling programs. Monitoring each separate stream volumes, days to fullness, and other activities in CLEAN enables you to make changes where needed to create a more effective public recycling program. Leverage the stations’ valuable sidewalk real estate to add messaging of encouraging words to change your users’ recycling behaviors.”Philadelphia is perhaps the best example of how effective the system can be. The city bought 210 of the recycling containers in 2009. On average, each collected 225 pounds of recyclables monthly, resulting in 23.5 tons of material diverted from landfills. Philly gets $50 per ton from the recycling — and avoiding $63 in landfill tipping fees, with a total benefit to the city of $113 per ton, or $2599 per month.

Here’s where it really gets neat, in my estimation.

Because the BigBellys are connected in real time, the devices can serve a number of real-time communication functions as well (enabled by an open API and an emphasis by BigBelly on finding collaborative uses). That includes making them hubs for a “mesh network” municipal wi-fi system (which, by the way, means that your local trash container/communications hub could actually save your life in a disaster or terror attack, when stationary networks may be disrupted, as I explained years ago in this YouTube video).

The list of benefits goes on (BigBelly lists all of them, right down to “Happy Cities,” on its web site). Trust me: if my premise is right that we can’t predict all of the benefits of the IoT at this point because we simply aren’t accustomed to thinking expansively about all the ways connected devices can be used, there will be more!

So here’s my take-away from the BigBelly:

If something as humble and ubiquitous as a municipal trashcan can  be transformed into a waste-reduction, recycling collection, municipal communication hub, then to fully exploit the Internet of Things’ full potential, we need to take a new, creative look at every material thing we interact with, no longer making assumptions about its limited role, and instead looking at it creatively as part of an interconnected network whose utility grows the more things (and people!) it’s connected with!

Let me know your ideas on how to capitalize on this new world of possibilities!

comments: Comments Off on Incredible example of rethinking “things” with Internet of Things tags: , , , , , , ,

Sensors remain critical to spread of Internet of Things

What happens with sensor design, cost, and security remains front-and-center with the Internet of Things, no matter how much we focus on advanced analytical tools and the growing power of mobile devices.

That’s because, on one hand, truly realizing the IoT’s full potential will require that at least some sensors get to the low-power, tiny size and cheap costs needed to realize Kris Pister’s dream of “smart dust” sensors that can be strewn widely.

On the other hand, there’s the chance that low-end sensors that don’t include adequate security firmware can’t keep up with the changing nature of security risks and may give hackers access to the entire network, with potentially disastrous effects.

That’s why several reports on sensors caught my eye.

PWC released a report, Sensing the Future of the Internet of Things, zeroing in on sensor sales as a proxy for increased corporate investment in the IoT, and concluding that by that measure, “the IoT movement is underway.” Based on its 2014 survey of 1,500 business and technology leaders worldwide, there was one eye-popping finding: the US lags behind the entire rest of the world in planned spending on sensors this year: 26% of Asian and almost as many from South America (percentage not given)  followed closely by Africa, with 18%.  The surprising laggards? Europe with 8% and North America, dead last at only 7%.  Hello?????

Equally interesting was the company’s listing of the industry segments leading the deployment of sensors and examples of the sensors they’re using:

  • Energy & Mining: 33%. “Sensors continuously monitor and detect dangerous carbon monoxide levels in mines to improve workplace safety.”
  • Power and Utilities: 32%.  Instead of the old one-way metering, “Internet-connected smart meters measure power usage every 15 minutes and provide feedback to the power consumer, sometimes automatically adjusting the system’s parameters.”
  • Automotive: 31%.  “Sensors and beacons embedded in the road working together with car-based sensors are used for hands-free driving, traffic pattern optimization and accident avoidance.”
  • Industrial: 25%. “A manufacturing plant distributes plant monitoring and optimization tasks across several remote, interconnected control points. Specialists once needed to maintain, service and optimize distributed plant operations are no longer required to be physically present at the plant location, providing economies of scale.”
  • Hospitality: 22%. “Electronic doorbells silently scan hotel rooms with infrared sensors to detect body heat, so the staff can clean when guests have left the room.”
  • Health Care: 20%. “EKG sensors work together with patients’ smartphones to monitor and transmit patient physical environment and vital signs to a central cloud-based system.”
  • Retail: 20%. “Product and shelf sensors collect data throughout the entire supply chain—from dock to shelf. Predictive analytics applications process this data and optimize the supply chain.”
  • Entertainment: 18%. “In the gaming world, companies use tracking sensors to transfer the movements of users onto the screen and into the action.”
  • Technology: 17%. “Hardware manufacturers continue to innovate by embedding sensors to measure performance and predict maintenance needs before they happen.”
  • Financial Services: 13%. “Telematics allows devices installed in the car to transmit data to drivers and insurers. Applications like stolen vehicle recovery, automatic crash notification, and vehicle data recording can minimize both direct and indirect costs while providing effective risk management.”

The surprises there were that health care penetration was so low, especially because m-health can be so helpful in diagnosis and treatment, while the examples of telematics seemed off the mark in the financial services category. Why not examples such as ApplePay?

More compelling were the relatively high rates of sensor deployment in high-stakes fields such as energy, utilities, and automotive: those are such huge industries, and the benefits of real-time data are so compelling that they show the IoT is really maturing.

Finally, the percentage of companies investing in sensors grew slightly, from 17% to 20%, with 25%of what PWC labels “Top Performers” are investing in them compared to 18% the previous year. Surprisingly, most companies don’t get it about sensors’ importance: only “14% of respondents said sensors would be of the highest strategic importance to their organizations in the next 3–5 years, as compared to other emerging technologies.”

Most important, 54% of those “Top Performers” said they’d invest in sensors this year.


 

Sensors’ promise as the size decreases — radically — and functionality increases was highlighted by The Guardian.  It focused on PragmaticIC Printing, a British firm that prints tiny, hairlike sensors on plastics. CEO Scott White’s hope is that:

” the ultra-thin microcircuits will soon feature on wine bottles to tell when a Chablis is at the perfect temperature and on medication blister packs to alert a doctor if an elderly patient has not taken their pills.

“With something which is slimmer than a human hair and very flexible, you can embed that in objects in a way that is not apparent to the user until it is called upon to do something. But also the cost is dramatically lower than with conventional silicon so it allows it to be put in products and packaging that would never justify the cost of a piece of normal electronics,” said White.

 

These uses certainly meet my test of real innovation: what can you do that you couldn’t do before. Or, as White puts it, “It is the combination of those factors [price and size] which allows us to start thinking about doing things with this which wouldn’t even be conceivable with conventional silicon based electronics.”

Another article that really caught my eye regarded a new category of “hearable” — and perhaps even, more radically, “disappearables” –sensors which the headline boldly predicted “As Sensors Shrink, Wearables Will Dis-appear.” But they were barely here in the first place, LOL!  The article mentioned significant breakthroughs in reducing sensors’ size and energy requirements, as well as harvesting ambient energy produced by sources such as bodily movement:

“Andrew Sheehy of Generator Research calculates that, for example, the heat in a human eyeball could power a 5 milliwatt transmitter – more than enough, he says, to power a connection from a smart contact lens to a smartphone or other controlling device.”

 The same article mentioned some cutting-edge research such as a Google/Novartis collaboration to measure glucose levels in tears via a contact lense, and an edible embedded microchip — the size of a grain of sand — and powered by stomach juices, which would transmit data by Bluetooth.
Elsewhere, a sampling of sensor design breakthroughs in recent months show the potential for radical reductions in costs and energy needs as well as increased sensitivity and data yield:

HOWEVER, as I said above, here’s what worries me. Are developers paying enough attention to security and privacy? That could be a real downfall for the IoT, since many sensors tend to be in place for years, and the nature of security challenges can change dramatically during that time.  Reducing price can’t be at the expense of security.

Let me know what steps you’re taking to boost sensor security, and I’ll mention them in a future post!

comments: Comments Off on Sensors remain critical to spread of Internet of Things tags: , , , ,

Smart Cities: opportunity … and danger if security isn’t a priority

Smart cities are one of the Internet of Things’ most promising areas — as well as one of the most potentially dangerous.

As this list of smart city initiatives shows, The IoT can reduce energy consumption, cut operating costs, and improve the quality of life. However, if hacked, it could also potentially paralyze an entire city and plunge it into darkness and/or create traffic gridlock.

As in so many other IoT areas, which scenario wins out will rest increasingly on making security and privacy in smart cities an absolute priority from Day 1, not an afterthought.

A recent New York Times article brings the issue to the foreground again, through the work of Cesar Cerrudo, an Argentine security researcher and chief technology officer at IOActive Labs, who showed what happens when idiots (so sue me…) decide not to make security a priority:

” (he) demonstrated how 200,000 traffic control sensors installed in major hubs like Washington; New York; New Jersey; San Francisco; Seattle; Lyon, France; and Melbourne, Australia, were vulnerable to attack. Mr. Cerrudo showed how information coming from these sensors could be intercepted from 1,500 feet away — or even by drone — because one company had failed to encrypt its traffic.

“Just last Saturday, Mr. Cerrudo tested the same traffic sensors in San Francisco and found that, one year later, they were still not encrypted.”

Even worse, Cerrudo found the same failure to bake in obvious security measures such as encryption in a wide range of other smart city devices and software.

The article goes on to cite a variety of very real cybersecurity threats to cities and critical infrastructure (don’t forget that about 85% of the nation’s critical infrastructure is in private ownership) including a break-in at a utility’s control network by a “sophisticated threat actor” that just guessed a password.

Among the measures Cerrudo suggests that cities take to reduce their vulnerability:

  • think of cities “as vast attack surfaces that require security protection just as a corporate network might.”
  • encrypt data, use strong passwords, and patch security holes
  • create computer emergency response teams (CERTs), for rapid response
  • restrict data access and monitor who does have it.
  • “Finally, he suggests that cities prepare for the worst, as they would for a natural disaster.”

He concluded:

“When we see that the data that feeds smart city systems is blindly trusted and can be easily manipulated — that the systems can be easily hacked and there are security problems everywhere — that is when smart cities become dumb cities.” (my emphasis)

Let me be blunt about it: whether in smart cities or any other aspect of the Internet of Things, if your attitude is “we’ll get around to security” after concentrating on product development, you’re irresponsible and deserve to fail — before your irresponsibility harms others.


BTW, here’s a great way for you to have a role in shaping tomorrow’s smart cities. IBM (who would have thunk it?  I suspect this is reflects Ginni Rometty’s change in direction and attitude at the top) has created People for Smarter Cities, a new site to crowdsource ideas for how to make cities smarter. It’s a great example of democratizing innovation, one of my IoT Essential Truths. I plan to contribute and hope you will as well!

comments: Comments Off on Smart Cities: opportunity … and danger if security isn’t a priority tags: , , , , ,

Virtual Sensor Networks: a key #IoT tool?

I was once again honored to be a guest on Coffee Break With Game Changers Radio today with David Jonker and Ira Berk of SAP — it’s always a delight to have a dialogue on the Internet of Things with these two brainy guys (and hats off as well to moderator/host Bonnie Graham!).

Toward the end of the show, Ira brought up a concept that was new to me: virtual sensor networks.

I’ve got sensors on the brain right now, because I’m frankly worried that sensors that don’t have adequate baked-in security and privacy protections and which can’t be ungraded as new opportunities and threats present themselves may be a threat to the IoT because they typically remain in use for so many years. Ah, but that’s a topic for another post.

According to Wikipedia, Virtual sensor networks are an:

“… emerging form of collaborative wireless sensor networks. In contrast to early wireless sensor networks that were dedicated to a specific application (e.g., target tracking), VSNs enable multi-purpose, collaborative, and resource efficient WSNs. The key idea difference of VSNs is the collaboration and resource sharing….
“… A VSN can be formed by providing logical connectivity among collaborative sensors. Nodes can be grouped into different VSNs based on the phenomenon they track (e.g., rock slides vs. animal crossing) or the task they perform. VSNs are expected to provide the protocol support for formation, usage, adaptation, and maintenance of subset of sensors collaborating on a specific task(s). Even the nodes that do not sense the particular event/phenomenon could be part of a VSN as far as they are willing to allow sensing nodes to communicate through them. Thus, VSNs make use of intermediate nodes, networks, or other VSNs to efficiently deliver messages across members of a VSN.”

Makes sense to me: collaboration is a critical basic component of the human aspect of the IoT (one of my IoT “Essential Truths), so why shouldn’t that extend to the mechanics as well?). If you have a variety of sensors already deployed in a given area, why should you have to deploy a whole new set of single-purpose ones to monitor a different condition if data could be synthesized from the existing sensors to effectively yield the same needed information?

2008 article on the concept said the virtual sensor networks are particularly relevant to three categories where data is* needed:

“Firstly, VSNs are useful in geographically overlapped applications, e.g., monitoring rockslides and animal crossing within a mountainous terrain. Different types of devices that detect these phenomena can relay each other for data transfer without having to deploy separate networks (Fig. 1). Secondly, VSNs are useful in logically separating multipurpose sensor networks, e.g., smart neighborhood systems with multifunctional sensor nodes. Thirdly, VSNs can be used to enhance efficiency of systems that track dynamic phenomena such as subsurface chemical plumes that migrate, split, or merge. Such networks may involve dynamically varying subsets of sensors.”

That article went on to propose a flexible, self-organizing “cluster-tree” approach to create the VSN, using tracking of a pollution plume as an example:

“…  a subset of nodes organizes themselves to form a VSN to track a specific plume. Whenever a node detects a relevant event for the first time it sends a message towards the root of the cluster tree indicating that it is aware of the phenomenon and wants to collaborate with similar nodes. The node may join an existing VSN or makes it possible for other nodes that wish to form a VSN, to find it. Use of a cluster tree or a similar structure guarantees that two or more nodes observing the same phenomenon will discover each other. Simulation based results show that our approach is more efficient and reliable than Rumor Routing and is able to combine all the nodes that collaborate on a specific task into a VSN.”

I suspect the virtual sensor network concept will become particularly widespread as part of “smart city” deployments: cash-strapped municipalities will want to get as much bang for the buck possible from already-deployed sensors, without having to install new ones. Bet my friends in Spain at Libellium will be in the forefront of this movement!

Thanks, Ira!


*BTW: if any members of the Grammar Police are lurking out there (I’m a retired lt. colonel of the Mass. State Grammar Police myself), you may take umbrage at “data is.”  Strictly speaking, the proper usage in the past has been “data are,” but the alternative is becoming so widespread that it’s becoming acceptable usage. So sue me…

 

comments: Comments Off on Virtual Sensor Networks: a key #IoT tool? tags: , , , ,
http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management