Digital Twins: Could They Have Uncovered the Boeing 737 Problems Sooner? — and how might they benefit your company

Tragically, the Boeing 737-Max includes an Internet of Things technology — the “digital twin” — that might have avoided the current tragedies, if only its use had been extended from the engines to the entire plane’s operations. Even if your products don’t involve such high stakes as a jet plane does, your company should seriously consider adding the digital twin to your services, because it can benefit every aspect of your operations and strategy.

Let me explain.

A joint venture company between GE Aviation and a French company makes the Max’s CFM International LEAP engines.  Every one of them is paired to a digital representation of the engine, a digital twin, that allows an engineer thousands of miles away to instantly monitor an inflight engine’s current operations.  That, among many other benefits, allows GE to replace the preventive maintenance of the past, which had to rely on after-the-fact data about when the average engine needed to be maintained, with “predictive maintenance,” which uses data about the earliest evidence of a possible problem to trigger a sequence to intervene early on, well before a major problem. At its most extreme, that could mean that when a plane whose sensors have detected an engine anomaly lands at its destination, the mechanic would be ready to go, knowing not only where in the engine the problem existed, but also having had the replacement part automatically dispatched from a distribution hub, so the replacement could be done quickly and at least cost.  No wonder GE has created more than hundreds of thousands of digital twins for products ranging from the jet engines to medical devices.

What if Boeing had extended the “digital twin” concept to the entire plane’s operations, including the navigation software?  The real essence of the Internet of Things — of which the digital twin is perhaps the ideal example of how the IoT merges the digital and physical — is that it allows everyone who needs it to instantly share (the verb is critical!) that real-time data — something that was impossible in the past.  In this case, that could mean real-time sharing between the cockpit, the airline, and Boeing, rather than after the fact harvesting of data from a plane’s “black box.” Hypothetically, the ability to share the real-time cockpit data would have meant that all those parties could have collaboratively brainstormed solutions to possible in-flight problems such as the maneuvering characteristics augmentation system, (MCAS) that has been fingered the possible cause of the problems.

OK, how does this ability to share real-time data from a digital twin apply to your company’s products and operations? 

The potential benefits extend to every aspect of your operations:

More radically, the digital twin’s benefits in terms of reliability and improved design can allow a fundamental change in your business model, away from selling products to leasing them, with the customer’s actual cost based on use of the product (if the turbine is sitting on the ground being repaired, it ain’t bringing the manufacturer any revenue!).  All three major jet turbine manufacturers — GE, Pratt & Whitney, and Rolls-Royce — have made this switch. They can even create new revenue streams by selling the real-time in-flight data to airlines, which can mash it up with atmospheric conditions, fuel prices, etc., to maximize flight efficiency.  Similarly, Hortilux, which makes greenhouse lights, now provides artificial light, plus data on growing conditions, rather than selling the bulbs.

Even more important than the potential to improve individual aspects of operations through digital twins is the potential for innovation and creativity if all departments (and, if you choose, even supply chain and distribution network partners and, conceivably, your customers) look at and can discuss the data—ground truth—simultaneously.

Determination of exactly what happened and why with the 737-Maxes will require intense scrutiny, but your company can benefit from the wake-up call these tragedies have provided to the IoT’s new-found ability to gather and share operating data instantly, with the result being improving every aspect of your operations and strategy.

comments: Closed tags: , , , , , ,

No more excuses for companies to delay IoT strategies!

Frequently companies reluctant to invest in the IoT cite their massive investments in legacy production equipment that doesn’t have M2M capacity as a barrier.  However, J & J was able to cut operating cuts by 10% and reduce downtime by 5%.  As a WEF spokesman told The Irish Times,
“The fourth industrial revolution doesn’t always mean newer, more expensive machines. Rather it can mean better communicating with and responding to the technologies you do have… By implementing simple internet-of-things devices across a range of machines that were never intended to ‘talk’ to each other, the Depuy Synthes factory created real-time digital twins of its factory equipment to monitor performance.”
Another of the nine, P & G’s Rakona plant in the Czech Republic, has also brought an existing plant up to date with the IoT. Built in 1875, it “can seamlessly change the product being manufactured with a push of a button, an innovation that reduced costs by 20% and upped output by a whopping 160%.”

IoT-based “Regulation 3.0” Might Have Avoided Merrimack Valley Tragedies

Pardon me: this is a very personal post.

For about an hour Thursday night we didn’t know whether my son’s home in Lawrence was one of those blown up by the gasline explosions (fortunately, he and his dear family were never at risk — they’re living in Bolivia for two years — but the house was right at Ground Zero). Fortunately, it is intact.

However, the scare took me back to an op-ed I wrote eight years ago in Federal Computer Week after the BP catastrophe in the Gulf, when I was working in disaster communications. I proposed what in fact was an IoT-based way to avoid similar disasters in the future: what I called “Regulation 3.0,” which would be a win-win solution for critical infrastructure companies (85% of the critical infrastructure in the US is in private hands) and the public interest by installing IoT-monitoring sensors and M2M control devices that would act automatically on that sensor data, rather than requiring human intervention:

  • in daily operations, it would let the companies dramatically increase their efficiency by giving real-time data on where the contents were and the condition of pipelines, wires, etc. so the operations could be optimized.
  • in a disaster, as we found out in Lawrence and Andover, where Columbia Gas evidently blew it on response management, government agencies (and, conceivably, even the general public, might have real-time data, to speed the response (that’s because of one of my IoT Essential Truths, “share data, don’t hoard it”).

We could never have that real-time data sharing in the past, so we were totally dependent on the responsible companies for data, which even they probably didn’t have because of the inability to monitor flow, etc.

Today, by contrast, we need to get beyond the old prescriptive regulations, which told companies what equipment to install (holding back progress when new, more efficient controls were created, and switch to performance-based regulation where the companies would instead be held to standards (i.e., in the not-too-distant future, when the IoT will be commonplace, collecting and sharing real-time data on their facilities), so they’d be free to adopt even better technology in the future.

However, Regulation 3.0 should become the norm, because it would be better all around:

  • helping the companies’ improve their daily operations.
  • cutting the cost of compliance (because data could be crunched and reported instantly, without requiring humans compiling and submitting it).
  • reducing the chance of incidents ever happening (When I wrote the op-ed I’d never heard of IoT-based “predictive maintenance,” which lets companies spot maintenance issues at the earliest point, so they can do repairs quickly and cheaper than if having to respond once they’re full-blown problems.).

I had a chance to discuss the concept yesterday with Rep. Joe Kennedy, who showed a real knowledge of the IoT and seemed open to the incident.

Eight years after I first broached the concept, PTC reports that the pipeline industry is now impementing IoT-based operations, with benefits including:

  • Situational awareness..
  • Situational intelligence..
  • and Predictive analytics.

Clearly, this is in the economic interests of the companies that control the infrastructure, and of the public interest.  The Time has come for IoT-based “Regulation 3.0.”

 

Previewing “The Future Is Smart”: Siemens Leads Way In IoT Transformation

Huzzah!

On August 7th, HarperCollins’ new Leadership imprint (formerly Amacom) will publish The Future Is Smart, my guide to IoT strategy for businesses and the general public.  BTW: write me if you’d like to arrange a speaking engagement/book signing event!

As part of the build-up to the release, here’s another excerpt from the book, drawn from Chapter 5: “Siemens and GE:Old War Horses Leading the IoT Revolution.” It zeroes in on these two industrial companies from the 19th (!!) century that are arguably among the top IoT companies in the world (although, sadly, GE’s transformation, which I’ll detail in the next excerpt, has not resulted — so far — in a return to its former profitability). I highlighted these two companies in part to give comfort to old-line manufacturers that have been reluctant to embrace the IoT, and in part to shame them: if they can do it, why can’t you?

Siemens is a particularly exciting example, applying IoT thinking and technology to gain a competitive edge in the railroad business, which it has been involved in since the 19th century, and because its Amberg “Factory of the Future” is the epitome of the benefits of applying the IoT to manufacturing,  The excerpt is long, but I think the details on Siemens’ IoT transformation will make it worthwhile reading.

 


For all their (referring to Siemens and GE) own distinctive products and services, there are startling parallels between the two that are relevant to this book, particularly for readers whose companies have been unaware of the IoT or are modestly testing the waters. Both Siemens and GE have fully committed to the IoT and are radically reinventing themselves, their products, and their services. 

At the same time, they are not abandoning the physical for the digital: they still make products such as trains (NB: since this book went to press, GE announced it will quit to locomotive business as it struggles to regain momentum) and large medical diagnostic devices that remain necessary in the new economy, and those devices (as well as the new software lines) are used by many other companies in their own manufacturing. Both companies aren’t just testing the IoT: they are on the bleeding edge of innovation in terms of both IoT technology and services.

Siemens and GE embody most of the marks of the IoT company outlined in the first chapter:

  • Unprecedented assembly-line precision and product quality
  • Drastically lower maintenance costs and product failure
  • Increased customer delight and loyalty
  • Improved decision-making
  • Creating new business models and revenue streams

And, while they haven’t formally addressed the sixth IoT hallmark, the circular management organization, both companies exhibit management characteristics consistent with it.

Bottom-line: if these two relics of the early Industrial Age can make the IoT transformation, why can’t you?

(Siemens’) innovations in industrial automation are now associated with the concept of the digital factory. “Siemens set the course for the digital automation of entire production facilities as far back as 1996, when the launch of its Totally Integrated Automation (TIA) Portal enabled companies to coordinate elements of their production operations and to closely intermesh hardware with software.”

Siemens has benefited in recent years from the German government’s formal strategy for what it calls “Industrie 4.0,” to merge physical products with digital controls and communications. The initiative is supported by funding from the German Federal Ministry of Education and Research and the German Federal Ministry of Economic Affairs and Energy and emphasizes the merger of the digital and physical in manufacturing through cyber-physical control systems. Because the U.S. federal government doesn’t weigh in on specific economic plans to the same extent, the concept is more advanced in Europe, and the term has gathered cachet, especially as specific examples have proved profitable.

Factory of the Future:
The shining example of Industrie 4.0 is the previously mentioned Siemens plant in Amberg. It has increasingly computerized over the past 25 twenty-five years, and now is a laboratory for fusion of the physical and digital.

The plant’s 99.99885 percent quality rate would be astounding by any measure, but is even more incredible when you realize that it does not do daily repetitions of the same mass-production product run. Instead, Amberg is where the company makes the Simatic programmable logic controls (PLCs) .. that are the heart of its industrial output and which are used worldwide to allow Machine-to-Machine (M2M) automated assembly line self-regulation. They are made in more than a thousand variations for 60,000 customers worldwide, requiring frequent readjustments of the production line. In one of the ultimate examples of eating your own dog food, a thousand Simatic units are used to control the assembly line. Total output at the factory is 12 million yearly, or approximately one per second.

One downside of the Amberg system’s efficiency is that automation has nearly eliminated assembly line jobs: the only time humans touch one of the products is to put the initial circuit board on the assembly line. The 1,100-person workforce deals almost entirely with computer issues and overall supervision of the assembly line. Nevertheless, Siemens doesn’t visualize a totally automated, workerless factory in the future:

“We’re not planning to create a workerless factory,” says [Plant Manager Professor Karl-Heinz] Büttner. After all, the machines themselves might be efficient, but they don’t come up with ideas for improving the system. Büttner adds that the employees’ suggested improvements account for 40 percent of annual productivity increases. The remaining 60 percent is a result of infrastructure investments, such as the purchase of new assembly lines and the innovative improvement of logistics equipment. The basic idea here, says Büttner, is that “employees are much better than management at determining what works or doesn’t work in daily operation and how processes can be optimized.” In 2013 the [plant] adopted 13,000 of these ideas and rewarded employees with payments totaling around €1 million.

As Siemens develops new IIoT software, it is deployed at the Amberg factory to control the Simatic control units, which generate more than 50 million data points daily for analysis. Among other programs, the factory runs the NX and Teamcenter project lifecycle management software, allowing the staff to share realtime insights on the assembly line and fine-tune its operation.

Siemens’s strategy of merging the physical and digital has meant that its software offerings constantly expand, and they facilitate the kind of real and virtual collaborative workstyles that will be discussed at length in Chapter 8. Among others, they include offerings that specifically address key aspects of the IoT:

  • Product Lifecycle Management software programs, which let engineers both model new products and extensively test them virtually, without having to build and test physical models. This both cuts costs and allows more experimentation with “what if” variations on a design, because the risk of creating alternatives is so low. As we will see later, products designed with PLM can reach the market 50 percent faster. One particularly interesting part of the PLM offerings is one specifically for additive manufacturing (i.e., 3-D printing), to capitalize on this emerging option. Siemens has brought all of these programs together under the Teamcenter label, emphasizing that it provides an “open framework for interoperability,” a critical example of the “share the data” Essential Truth discussed in Chapter 2, allowing anyone who needs it companywide to access critical realtime data.
  • Digital Twins used in coordination with PLM, discussed earlier (Chapter 4) as the highest manifestation of the digital/physical synthesis, allow rigorous testing of products before they are launched.
  • Perhaps the most important of these software offerings for full realization of the Industrie 4.0 vision is the new combination of Siemens XHQ Operations Intelligence Software with the open-systems Siemens MindSphere cloud that adds advanced analytics and machine learning. Also, because it is cloud-based, the XHQ data can be ported to other cloud-based applications. If your company is considering an IoT initiative, the cloud-based alternative not only can save money compared to self-storage, but also opens the opportunity for using cloud-based Software as a Service (SaaS).

 

Railigent

Fittingly, some of the most dramatic examples of Siemens’s IoT thinking in action have centered on one of its oldest lines of business: those electric trains invented in the nineteenth century.  The company’s Railigent system (which connects to its IoT Mindsphere platform) can:

  • cut rail systems’ operating costs by up to 10%
  • deliver eye-popping on-time performance (only 1 of 2,300 trains was late!)
  • and assure 99% availability through predictive maintenance.

Its new Mobility Services have taken over maintenance for more than fifty rail and transit programs.

Again, the company’s years of experience building and operating trains pays off in the cyberworld. Dr. Sebastian Schoning, ceo of Siemens’s client Gehring Technologies, which manufactures precision honing tools, told me that it was easier to sell Siemens’s digital services to his own client base because so much of the products they already own include Siemens devices, giving his customers confidence in the new offerings.

The key to Siemens’s Mobility Services is Sinalytics, its platform architecture for data analysis not just for rail, but also for industries ranging from medical equipment to windfarms. More than 300,000 devices currently feed realtime data to the platform. Sinalytics capitalizes on the data for multiple uses, including connectivity, data integration, analytics, and the all-important cyber security. They call the result not Big Data, but Smart Data. The platform also allows merging the data with data from sources such as weather forecasts which, in combination, can let clients optimize operating efficiency on a real-time M2M basis.

Elements of an IoT system on the trains that can be adapted to other physical products include:

  • Sensing. There are sensors on the engines and gearboxes. Vibration sensors on microphones measure noises from bearings in commuter trains. They can even measure how engine oil is aging, so it can be changed when really needed, rather than on an arbitrary schedule, a key predictive maintenance advantage.
  • Algorithms: These make sense of the data and act on it. They read out patterns, record deviations, and compare them with train control systems or with vehicles of the same type.
  • Predictive Maintenance: This replaces scheduled maintenance, dramatically reducing downtime and catastrophic failure. For example: “There’s a warning in one of the windows (of the control center display): engine temperature unusual. ‘We need to analyze the situation in greater depth to know what to do next—we call it root cause analysis,’ (says) Vice-President for Customer Support Herbert Padinger. ‘We look at its history and draw on comparative data from the fleet as a whole.’ Clicking on the message opens a chart showing changes in temperature during the past three months. The increased heat is gradually traced to a signal assembly. The Siemens experts talk with the customer to establish how urgent the need for action is, and then take the most appropriate steps.”8 Padinger says that temperature and vibration analyses from the critical gearboxes gives Siemens at least three days advance notice of a breakdown—plenty of time for maintenance or replacement. Predictive maintenance is now the norm for 70 to 80 percent of Siemens’s repairs.
  • Security: This is especially important given all of the miles of track and large crowds on station platforms. It includes video-based train dispatch and platform surveillance using Siemens’s SITRAIL D system, as well as cameras in the trains. The protections have to run the gamut from physical attacks to cyber-attacks. For security, the data is shared by digital radio, not networks that are also shared by consumers.

When operations of physical objects are digitized, it allows seamlessly integrating emerging digital technologies into the services—making these huge engines showcases for the newest technologies. For example, Siemens Digital Services also included augmented reality (so repair personnel can see manuals on heads-up displays), social collaboration platforms, and—perhaps most important—3-D printing-based additive manufacturing, so that replacement parts can be delivered with unprecedented speed. 3-D printing also allows a dramatic reduction in parts inventories, It allows for replacement of parts that may no longer be available through conventional parts depots. It may even improve on the original part’s function and durability, based on practical experience gained from observing the parts in use. For example, it’s often possible with 3-D printed replacement parts to consolidate three or four separate components into a single one, strengthening and simplifying it. Siemens has used 3-D printing for the past last three years, and it lets them assure customers that they will have replacement parts for the locomotive’s entire lifespan, which can exceed thirty years.

The new Mobility Services approach’s results are dramatic:

  • None of the Velaro trains that Siemens maintains for several operators have broken down since implementing Sinalytics. Among those in Spain only one has left more than fifteen minutes behind time in 2,300 trips: a 0.0004 percent lateness rate.
  • Reliability for London’s West Coast Mainline is 99.7 percent.
  • Perhaps most impressive because of the extreme cold conditions it must endure, the reliability rate for the Velaro service in Russia is 99.9 percent.11

Siemens’s ultimate goal is higher: what the company calls (pardon the pun) 100 percent Railability.

When it does reach those previously inconceivable quality benchmarks, Siemens predicts that, as the software and sensors evolve, the next stage will be new business models in which billing will be determined by guaranteeing customers availability and performance. The manufacturing industry is now at the stage where the automation of complete workflows is the only way to ensure a long-term, defendable, competitive position.

Siemens emphasizes that it’s not enough to simply digitize the design process. Everything from design through supply chain, manufacturing, distribution, and service must be linked in a continuous digital web, with “complete digital representation of the entire physical value chain is the ultimate goal.”

 

The fact that Siemens doesn’t just sell these IoT services but makes their own manufacturing the laboratory to develop and test them is an incredible testimonial to the IoT’s transformative potential in every aspect of companies’ operations. So, as I asked above, why are you holding back? Like to think that The Future Is Smart will give you the manual you need to make the transition (why wait for August  7, when you can preorder today?).

Live Blogging #LlveWorx ’18, Day 2

Aiden Quilligan, Accenture Industry X.0, on AI:

  • Mindset and AI: must undo what Hollywood has done on this over years, pose it as human vs. machine.
  • We think it should be human PLUS machine.
  • he’s never seen anything move as fast as AI, especially in robotics
  • now, co-bots that work along side us
  • exoskeletons
  • what do we mean by AI?  Machine learning.  AI is range of technologies that can learn and then act. AI is the “new work colleague” we need to learn to get along with.
  • predictions: will generate #2.9 trillion in biz value and recover 6.2 billion hours of worker productivity in 2021.
  • myths:
    • 1) robots evil, coming for us: nothing inherently anti-human in them.
    • 2) will take our jobs. Element of truth in terms of repetitive, boring work that will be replaced. They will fill in for retiring workers. Some new industries created by them.  Believe there will be net creation of jobs.
    • 3) current approaches will still work.

6 steps to the Monetization of IoT, Terry Hughes:

  • Digital native companies (Uber) vs. digitally transforming companies
  • also companies such as Kodak that didn’t transform at all (vs. Fujifilm, which has transformed).
  • Forbes: 84% of companies have failed with at least one transformation program.  Each time you fail you lose 1/2 billion
  • steps:
    • 1) devices with potential
    • 2) cloud network communication
    • 3) software distribution
    • 4) partner and provider ecosystem
    • 5) create a marketplace.
    • 6) monetization of assets.
  • crazy example of software company that still ships packages rather than just download because of initial cost in new delivery system
  • 3 big software challenges for digitally transforming company
    • fragmented silos of software by product, business unit & software
    • messy and complex distribution channels
    • often no link between software and the hardware that it relates to
  • importance of an ecosystem
    • Blackberry example of one that didn’t have the ecosystem
  • 3rd parties will innovate and add value around a manufacturer’s core products
  • in IoT it’s a land grab for mindshare of 3rd-party innovators.
  • need strong developer program
  • tools for app development and integration
  • ease of building and publishing apps
  • path to discovery and revenue for developer
  • IDC: developer ecosystem allow enterprises to massively scale distribution
  • digitally native companies have totally different models (will get details later…)
  • hybrids:
    • GE Healthcare:  working with Gallus BioPharma
    • Heidelberg & Eig have digital biz model for folding carton printing. Pay per use
  • Ford is heading for mobility as a transformation

 


Bernard Marr: Why IoT, Combined With AI and Big Data, Fuels 4th Industrial Revolution

 

  • connecting everything in house to Internet
  • Spotify: their vision is they understand us better. Can correlate your activity on Apple Watch (such as spinning) & create a play list based on that)
  • FitBit: the photo will estimate your calorie content.
  • John Deere
  • ShotSpotter: the company that monitors gun shots
  • understanding customers & markets better than before:
    • Facebook: better at face recognition than we are. They can predict your IQ, your relationship status.
  • Lot of frightening, IMHO, examples of AI analyzing individuals and responding without consideration of ethics and privacy
  • 3) improving operations and efficiency:
    • self-driving boats
    • drones
    • medicine through Watson

panel on IoT:

  • Don’t be afraid of the cloud
  • Ryan Cahalane, Colfax: prepare for big, start small and move fast. They had remarkable growth with switch to IoT.  Not a digital strategy, but digital in everything they do. Have “connected welders,” for example.
  • Justin Hester, Hirotec: most importatnt strategic digital transformation decision your organization can make is the selection of a platform. The platform is the underlying digital thread that enables your team to meet  the unique and chanding needs of your organization and to scale those solutions rapidly. “Assisted reality” in ThingWorx
  • Shane O’Callahan, TSM (Ireland):  Make industrial automation equipment for manufacturing. Understanding your key value driver is where to start. Then start samll, scale fast and get a win!

Jeffrey Miller, PTC: Digital Transformation:

  • if you start with digital strategy you’re starting in wrong place Start with business strategy. 
  • Couple with innovation vision merged with digital strategy. Add business use cases.
  • Jobs: it’s not how much you spend on R & D, but “about the people you have, you you’re dled, and how much you get it”
  • create an environment for innovation
    • do we encourage experimentation?
    • is it ok to fail
  • identify digital technologies to provide the required operating capabilities:
    • have we conducted proofs of concept?
    • experimented, tested  and validated?
    • reviewed use cases & success studies?
    • delivered small, important, scalable successes?

Matt,  PTC: Bringing Business Value to AR:

  • augmented service guidance
  • remote expert guidance
  • manufacturing: machine setup and turnover, assembly and process
  • example of Bell & Howell towers to store online sales in WalMart stores for customer pickup: very expensive to send one to a store for salesperson to use in sales — now just use AR app to give realistic demo without expense.
  • service: poor documentation organization, wants accurate, relevant, onsite info for technician. Want to remove return visits because the repair wasn’t done 1st time, or there’s a new technician. Manuals in binders, etc. Instead, with AR, requirements are quick access to current info. Finally, a demo.

Suchitra Bose, Accenture: Manufacturing IIoT, Driving the Speed of Digital Manufacturing:

  • convergence of IT and OT
  • expanding digital footprint across your entire factory
  • PTC has wide range of case studies (“use cases” in biz speak…) on aspects of IoT & manufacturing.

I have seen the future, and it’s written in Chalk (PTC’s Vuforia Chalk, that is!)

I just had to take time out from my live blogging of PTC’s LiveWorx ’18 to focus on one of the topics Jim Heppelmann mentioned in passing in his keynote: the new variation on the company’s Vuforia AR app: Chalk.

Significant in its own right, I suspect Chalk will have an additional, critical impact: democratizing AR.

It is an app aimed at, and accessible to, both corporate audiences AND the general public.  Downloadable for both iPhone & iPads & Android devices, I suspect that it will quickly become popular both to support remote repair staff for companies and just plain folks who are trying, for example to help a family member far away to deal with a car or plumbing repair. Not to mention the fact (mandatory disclaimer: while I work part-time for Apple, I’m not privy to any corporate internal strategy) that the spiffy new $329 6th-generation iPad really facilitates AR, and Chalk was developed in conjunction with the Apple ARKit technology so it should really become popular.

Chalk has two components:

  • real-time video and voice sharing of the same view
  • Chalk Marks, simple handswipes that allow one of the participants to highlight the part that is the subject of the question.  The “Marks” appear to be anchored to the subjects they’re “drawn” on.

Real-world uses vary from a remote super-expert helping a field technician to identify and deal with a rare problem to your millennial helping Mom master her personal technology. I saw an amazing demo this morning with one mechanic in Germany (ok, he was actually 2′ away…) directing the mechanic working on a Mercedes how to add coolant.  As the press release announcing the app said:

“Today, remote assistance can be frustrating and cumbersome. People struggle for words to describe things that are unfamiliar, whether it be a new appliance or the back of a cable box. And when the problem can’t be described clearly, it becomes almost impossible for someone else to solve. Vuforia Chalk provides a simple and intuitive solution where people can now use Chalk Marks to get a common understanding of a problem, and the steps required to solve it.”

I’ve written before that I suspected many companies got into e-commerce in the 9o’s because a CEO’s kids got him to order a book from Amazon during the holidays & he came back raving about this new device.  I can’t help thinking that this will be just the kind of low-cost (heck, in this case, no-cost) introduction to AR And the IoT that will break down some companies’ skepticism, pay off with immediate bottom line benefits in cost savings and efficiency in service operations, and get them interested in most expensive AR such as PTC’s digital twins and predictive maintenance.  Or, as ABI analyst Eric Abbruzzes said:

“Mainstream augmented reality is at the beginning of a strong positive inflection point, and Vuforia Chalk is a great example of how AR can transition from enterprise-only to use in everyday life,” said Eric Abbruzzese, ABI Research. “We see Vuforia Chalk as a fundamentally disruptive form of remote communication that will be well received across multiple sectors and for multiple use cases.”

Now to get my granddaughter to download the app so we can collaborate on the 3D-printer that I got her for her 12th- birthday!

Wahoo! Liveblogging #Liveworx ’18!

Always my fav event, I’ll be liveblogging #LiveWorx ’18.  Stay tuned!

Keynote: Jim Heppelmann:

  • “from a place to a pace” — how fast are we moving?
  • no longer OK to think of a future destination, builds inertia (“your main competitor”). Disruption may have already happened. Hard to sustain advantage due to pace of change. Must “embrace a pace of change”
  • Um, this sounds like argument for my circular company paradigm shift!!!
  • Customer Experience Center will occupy top floor of new building.
  • combo of  physical, human and digital — transforming all at once speeds change:
    • physical: been constrained by subtractive manufacturing, while nature improves via cell division (i.e., additive). “Adopt Mother Nature’s mindset.” — new additive aspects of Creo. Example of Triumph cycle sing-arm using additive. CREO uses AI to optimize performance: non-symmetrical design. Still need to use simulation tests: new intermittent, continuous style: they are doing new partnership with ANSYS (product simulation software), unified modeling and simulation with no gaps. Historically, simulation only used at end of design cycle, now can use it throughout the process: “pervasive simulation.”
      • ANSYS “Discovery Live”: optimizes for real-time. Integrates with Creo — instant feedback on new designs. “simulation critical to innovation.”
    • digital: working with Microsoft Azure (Rodney Clark, Microsoft IoT VP). Microsoft investing $5b in IoT.  1st collaboration is an industrial welder: IoT data optimizes productivity.  BAE can train new employees 30-40% quicker.
    • finally, human: “Mother Nature designed ups to interface with the physical. How do we integrate with the digital? — Siri, Alexa, Cortna still too slow.  Sight is our best bet. “Need direct pipeline to reality ” — that’s AR. “Smart, connected humans.” Sysmex: for medical lab analysis. Hospitals need real-time access to blood cell analysis. They have real-time calibration of analysis equipment. Also improving knowledge of the support techs, using AR and digital twins when repairs are needed.
      • Will help 2.5 billion workers become more productive
      • AR can project how a process is being programmed (gotta see this one. will try to get video).
      • All of their human/digital interface initiatives united under Vuforia. Already have 10,000 enterprises using it.
    • Factories are a new focus of PTC. 200 companies now using it in 800 factories. Examples from Woodward & Colfax.  Big savings on new employee training.

Keynote: Prof. Linda Hill, HBS, “Collective Genius”:

  • Innovation= novel + useful
  • Example of Pixar: collective genius “filmmaking is a team sport.”
  • 3 characteristics of creative organizations they looked at:
    • “creative abrasion” — diversity and debate
    • “creative agility” — quickly test the idea & get feedback. Experiment rather than run pilots, which often include politics
    • “creative resolution” — ability to make integrative decisions. Don’t necessarily defer to the experts.
    • sense of community and shared purpose.
  • values: bold ambition, collaboration, responsibility, learning.
  • rules of engagement: respect, trust, influence, see the whole, question everything, be data-driven.

Ray Miciek, Aquitas Solutions. Getting Started on IoT-based Maintenance:

  • his company specializes in asset maintenance.
  • “produce products with assets that never fail”
  • 82% of all asset failures are random, because they are more IT-related now
  • find someplace in org. where you could gain info to avoid failure.
  • Can start small, then quickly expand.

 

Great Podcast Discussion of #IoT Strategy With Old Friend Jason Daniels

Right after I submitted my final manuscript for The Future is Smart I had a chance to spend an hour with old friend Jason Daniels (we collaborated on a series of “21st Century Homeland Security Tips You Won’t Hear From Officials” videos back when I was a homeland security theorist) on his “Studio @ 50 Oliver” podcast.

We covered just about every topic I hit in the book, with a heavy emphasis on the attitude shifts (“IoT Essential Truths” needed to really capitalize on the IoT and the bleeding-edge concept I introduce at the end of the book, the “Circular Corporation,” with departments and individuals (even including your supply chain, distribution network and customers, if you choose) in a continuous, circular management style revolving around a shared real-time IoT hub.  Hope you’ll enjoy it!

comments: Comments Off on Great Podcast Discussion of #IoT Strategy With Old Friend Jason Daniels tags: , , , , , ,

OtoSense: the next level in sound-based IoT

It sounds (pardon the pun) as if the IoT may really be taking off as an important diagnostic repair tool.

I wrote a while ago about the Auguscope, which represents a great way to begin an incremental approach to the IoT because it’s a hand-held device to monitor equipment’s sounds and diagnose possible problems based on abnormalities.

Now NPR reports on a local (Cambridge) firm, OtoSense, that is expanding on this concept on the software end. Its tagline is “First software platform turning real-time machine sounds and vibrations into actionable meaning at the edge.”

Love the platform’s origins: it grows out of founder Sebastien Christian’s research on deafness (as I wrote in my earlier post, I view suddenly being able to interpret things’ sounds as a variation on how the IoT eliminates the “Collective Blindness”  that I’ve used to describe our past inability to monitor things before the IoT’s advent):

“[Christian} … is a quantum physicist and neuroscientist who spent much of his career studying deaf children. He modeled how human hearing works. And then he realized, hey, I could use this model to help other deaf things, like, say, almost all machines.”

(aside: I see this as another important application of my favorite IoT question: learning to automatically ask “who else can use this data?” How does that apply to YOUR work? But I digress).

According to Technology Review, the company is concentrating primarily on analyzing car sounds from IoT detectors on the vehicle at this point (working with a number of car manufacturers) although they believe the concept can be applied to a wide range of sound-emitting machinery:

“… OtoSense is working with major automakers on software that could give cars their own sense of hearing to diagnose themselves before any problem gets too expensive. The technology could also help human-driven and automated vehicles stay safe, for example by listening for emergency sirens or sounds indicating road surface quality.

OtoSense has developed machine-learning software that can be trained to identify specific noises, including subtle changes in an engine or a vehicle’s brakes. French automaker PSA Group, owner of brands including Citroen and Peugeot, is testing a version of the software trained using thousands of sounds from its different vehicle models.

Under a project dubbed AudioHound, OtoSense has developed a prototype tablet app that a technician or even car owner could use to record audio for automated diagnosis, says Guillaume Catusseau, who works on vehicle noise in PSA’s R&D department.”

According to NPR, the company is working to apply the same approach to a wide range of other types of machines, from assembly lines to DIY drills. As always with IoT data, handling massive amounts of data will be a challenge, so they will emphasize edge processing.

OtoSense has a “design factory” on the site, where potential customers answer a variety of questions about the sounds they must monitor (such as whether the software will be used indoors or out, whether it is to detect anomalies, etc. that will allow the company to choose the appropriate version of the program.

TechCrunch did a great article on the concept, which underscores really making sound detection precise will take a lot of time and refinement, in part because of the fact that — guess what — sounds from a variety of sources are often mingled, so the relevant ones must be determined and isolated:

“We have loads of audio data, but lack critical labels. In the case of deep learning models, ‘black box’ problems make it hard to determine why an acoustical anomaly was flagged in the first place. We are still working the kinks out of real-time machine learning at the edge. And sounds often come packaged with more noise than signal, limiting the features that can be extracted from audio data.”

In part, as with other forms of pattern recognition such as voice, this is because it will require accumulating huge data files:

“Behind many of the greatest breakthroughs in machine learning lies a painstakingly assembled dataset.ImageNet for object recognition and things like the Linguistic Data Consortium and GOOG-411 in the case of speech recognition. But finding an adequate dataset to juxtapose the sound of a car-door shutting and a bedroom-door shutting is quite challenging.

“’Deep learning can do a lot if you build the model correctly, you just need a lot of machine data,’ says Scott Stephenson, CEO of Deepgram, a startup helping companies search through their audio data. ‘Speech recognition 15 years ago wasn’t that great without datasets.’

“Crowdsourced labeling of dogs and cats on Amazon Mechanical Turk is one thing. Collecting 100,000 sounds of ball bearings and labeling the loose ones is something entirely different.

“And while these problems plague even single-purpose acoustical classifiers, the holy grail of the space is a generalizable tool for identifying all sounds, not simply building a model to differentiate the sounds of those doors.

…”A lack of source separation can further complicate matters. This is one that even humans struggle with. If you’ve ever tried to pick out a single table conversation at a loud restaurant, you have an appreciation for how difficult it can be to make sense of overlapping sounds.

Bottom line: there’s still a lot of theoretical and product-specific testing that must be done before IoT-based sound detection will be an infallible diagnostic tool for predictive maintenance, but clearly there’s precedent for the concept, and the potential payoff are great!

 


LOL: as the NPR story pointed out, this science may owe its origins to two MIT grads of an earlier era, “Click” and “Clack” of Car Talk, who frequently got listeners to contribute their own hilarious descriptions of the sounds they heard from their malfunctioning cars.   BRTTTTphssssBRTTTT…..

comments: Comments Off on OtoSense: the next level in sound-based IoT tags: , , , , ,

#IoT Sensor Breakthroughs When Lives Are On the Line!

One of my unchanging principles is always to look to situations where there’s a lot at stake — especially human lives — for breakthroughs in difficult issues.

Exhibit A of this principle for the IoT is sensor design, where needing to frequently service or recharge critical sensors that detect battlefield conditions can put soldiers’ lives at stake (yes, as long-time readers know, this is particularly of interest to me because my Army officer son was wounded in Iraq).

FedTech reports encouraging research at DARPA on how to create sensors that have ultra-low power requirements, can lie dormant for long periods of time and yet are exquisitely sensitive to critical changes in conditions (such as vehicle or troop movements) that might put soldiers at risk in battlefield conditions.

The  N-ZERO (Near Zero RF and Power Operations)  program is a three-year initiative to create new, low-energy battlefield sensors, particularly for use at forward operating bases where conditions can change quickly and soldiers are constantly at risk — especially if they have to service the sensors:

“State-of-the-art military sensors rely on “active electronics” to detect vibration, light, sound or other signals for situational awareness and to inform tactical planning and action. That means the sensors constantly consume power, with much of that power spent processing what often turns out to be irrelevant data. This power consumption limits sensors’ useful lifetimes to a few weeks or months with even the best batteries and has slowed the development of new sensor technologies and capabilities. The chronic need to service or redeploy power-depleted sensors is not only costly and time-consuming but also increases warfighter exposure to danger.”

…. (the project has) the goal of developing the technological foundation for persistent, event-driven sensing capabilities in which the sensor can remain dormant, with near-zero power consumption, until awakened by an external trigger or stimulus. Examples of relevant stimuli are acoustic signatures of particular vehicle types or radio signatures of specific communications protocols. If successful, the program could extend the lifetime of remotely deployed communications and environmental sensors—also known as unattended ground sensors (UGS)—from weeks or months to years.”

A key goal is a 20-fold battery size reduction while still having the sensor last longer.

What cost-conscious pipeline operators, large ag business or “smart city” transportation director wouldn’t be interested in that kind of product as well?

According to Signal, the three-phase project is ahead of its targets. In the first part, which ended in December, the DARPA team created “zero-power receivers that can detect very weak signals — less than 70 decibel-milliwatt radio-frequency (RF) transmissions, a measure that is better than originally expected.” This is critical to the military (and would have huge benefits to business as well, since monitoring frequently must be 24/7 but reporting of background data  (vs. significant changes) would both deplete batteries while requiring processing of huge volumes of meaningless data). Accordingly, a key goal would be to create “… radio receivers that are continuously alert for friendly radio transmissions, but with near zero power consumption when transmissions are not present.” A target is  “exploitation of the energy in the signal signature itself to detect and discriminate the events of interest while rejecting noise and interference. This requires the development of passive or event-powered sensors and signal-processing circuitry. The successful development of these techniques and components could enable deployments of sensors that can remain “off” (that is, in a state that does not consume battery power), yet alert for detecting signatures of interest, resulting in greatly extended durations of operation.”

The “exploitation of .. energy in the signal signature itself sounds reminiscent of the University of Washington research I’ve reported in the past that would harness ambient back-scatter to allow battery-less wireless transmission, another key potential advance in IoT sensor networks.

The following phrases of N-ZERO will each take a year.

Let’s hope that the project is an overall success, and that the end products will also be commercialized. I’ve always felt sensor cost and power needs were potential IoT Achilles’ heels, so that would be a major boost!

comments: Comments Off on #IoT Sensor Breakthroughs When Lives Are On the Line! tags: , , , , ,
http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management