IoT-based “Regulation 3.0” Might Have Avoided Merrimack Valley Tragedies

Pardon me: this is a very personal post.

For about an hour Thursday night we didn’t know whether my son’s home in Lawrence was one of those blown up by the gasline explosions (fortunately, he and his dear family were never at risk — they’re living in Bolivia for two years — but the house was right at Ground Zero). Fortunately, it is intact.

However, the scare took me back to an op-ed I wrote eight years ago in Federal Computer Week after the BP catastrophe in the Gulf, when I was working in disaster communications. I proposed what in fact was an IoT-based way to avoid similar disasters in the future: what I called “Regulation 3.0,” which would be a win-win solution for critical infrastructure companies (85% of the critical infrastructure in the US is in private hands) and the public interest by installing IoT-monitoring sensors and M2M control devices that would act automatically on that sensor data, rather than requiring human intervention:

  • in daily operations, it would let the companies dramatically increase their efficiency by giving real-time data on where the contents were and the condition of pipelines, wires, etc. so the operations could be optimized.
  • in a disaster, as we found out in Lawrence and Andover, where Columbia Gas evidently blew it on response management, government agencies (and, conceivably, even the general public, might have real-time data, to speed the response (that’s because of one of my IoT Essential Truths, “share data, don’t hoard it”).

We could never have that real-time data sharing in the past, so we were totally dependent on the responsible companies for data, which even they probably didn’t have because of the inability to monitor flow, etc.

Today, by contrast, we need to get beyond the old prescriptive regulations, which told companies what equipment to install (holding back progress when new, more efficient controls were created, and switch to performance-based regulation where the companies would instead be held to standards (i.e., in the not-too-distant future, when the IoT will be commonplace, collecting and sharing real-time data on their facilities), so they’d be free to adopt even better technology in the future.

However, Regulation 3.0 should become the norm, because it would be better all around:

  • helping the companies’ improve their daily operations.
  • cutting the cost of compliance (because data could be crunched and reported instantly, without requiring humans compiling and submitting it).
  • reducing the chance of incidents ever happening (When I wrote the op-ed I’d never heard of IoT-based “predictive maintenance,” which lets companies spot maintenance issues at the earliest point, so they can do repairs quickly and cheaper than if having to respond once they’re full-blown problems.).

I had a chance to discuss the concept yesterday with Rep. Joe Kennedy, who showed a real knowledge of the IoT and seemed open to the incident.

Eight years after I first broached the concept, PTC reports that the pipeline industry is now impementing IoT-based operations, with benefits including:

  • Situational awareness..
  • Situational intelligence..
  • and Predictive analytics.

Clearly, this is in the economic interests of the companies that control the infrastructure, and of the public interest.  The Time has come for IoT-based “Regulation 3.0.”

 

Holy Clayton Christensen! Is Local Motors prototype for future of manufacturing?

In the latter stages of writing The Future Is Smart, I came across Local Motors, an amazing company that is not only an IoT innovator but also might pr0vide a model to revolutionize American manufacturing in general.

I’d read an article years ago about the company when it was locally-based, but since it was focused entirely on off-road & fast cars at the time (both of which leave me cold) I didn’t follow up.

Now it’s diversifying into a cute small urban shuttle device, the Olli, which is being produced at Local Motion’s Knoxville microfactory, taps IBM’s Watson, and which they label “the world’s first self-driving cognitive vehicle.” Very cool.

co-creation

The first of Local Motor’s revolutionary aspects is its design process, which it labels “co-creation” (AKA crowdsourcing — in fact founder/visionary John B. (Jay) Rogers, Jr. says he was inspired by the Jeff Howe book of the same name). It uses a SaaS platform, where the company posts design challenges, and then community members (some experts, some just enthusiasts) offer their ideas. Eventually, the community votes on which designs to actually produce:

“An active process where brands and their customers work together with solvers, designers, and engineers to accelerate product and technology development. We call this group our Community and proudly work to empower genius ideas and brilliant solutions from Community members across the globe.”

The participatory aspect even extends to the shop floor: buyers can opt to personally take part in the final assembly process (and designs are also easily customized after the sale as well).

The company has also provided consulting services on co-creation for organizations ranging from the US Army to Airbus. 

This is not unlike my “share data, don’t hoard it” IoT Essential Truth, which is also at the heart of my Circular Company vision: when you involve and empower a wide range of people, you can unleash creativity that even the most talented person can’t.

direct digital manufacturing

The second Local Motors innovation is use of creative technologies, especially 3D printing, in manufacturing, what they call “direct digital manufacturing (DDM).”  The process mimics what Siemens does at its “Factory of the Future,”  where complete digitalization gives them quality, precision, and the opportunity for mass customization:

“DDM creates significant unfair advantages: the ability to produce parts directly from a CAD file; elimination of investments in tooling; reduction in time lag between design and production and, best of all, elimination of penalties for redesigns — unlocking mass customization that was previously unobtainable.”

According to Chief Strategy Officer Justin Fishkin, the economies possible with the DDH approach means the Rally Fighter model was profitable after only the 60th one was built.

microfactories

I’ve written before about Ford’s River Rouge plant, the ne plus ultra of the first Industrial Age: iron ore went in one end of the 1 x 1.6 mile factory and Model Ts came out the other.

By contrast, Local Motors is building several supermarket-sized “microfactories” around the globe at a cost 1/100th of that for conventional car plants, which “..will also act as points of sale, or what Fishkin calls ‘experiential dealerships.’”

 


The jury’s still out on Local Motors (Rogers, for example, has come in for some scathing tell-all comments by former employees), but even if it isn’t a roaring success, it will have a lasting legacy for challenging such long-held assumptions about the entire design/build process. and for exploiting the full benefits of digitization.  It’s the essence of Christensen’s disruptive innovation.

We’ll be watching

 

comments: Comments Off on Holy Clayton Christensen! Is Local Motors prototype for future of manufacturing? tags: , , , , , , ,

Great Podcast Discussion of #IoT Strategy With Old Friend Jason Daniels

Right after I submitted my final manuscript for The Future is Smart I had a chance to spend an hour with old friend Jason Daniels (we collaborated on a series of “21st Century Homeland Security Tips You Won’t Hear From Officials” videos back when I was a homeland security theorist) on his “Studio @ 50 Oliver” podcast.

We covered just about every topic I hit in the book, with a heavy emphasis on the attitude shifts (“IoT Essential Truths” needed to really capitalize on the IoT and the bleeding-edge concept I introduce at the end of the book, the “Circular Corporation,” with departments and individuals (even including your supply chain, distribution network and customers, if you choose) in a continuous, circular management style revolving around a shared real-time IoT hub.  Hope you’ll enjoy it!

comments: Comments Off on Great Podcast Discussion of #IoT Strategy With Old Friend Jason Daniels tags: , , , , , ,

Surprising Benefits of Combining IoT and Blockchain (they go beyond economic ones!)

One final effort to work this blockchain obsession out of my system so I can get on to some exciting other IoT news!

I couldn’t resist summarizing for you the key points in”Blockchain: the solution for transparency in product supply chains,” a white paper from Project Provenance Ltd., a London-based collective  (“Our common goal is to deliver meaningful change to commerce through open and accessible information about products and supply chains.”).

If you’ve followed any of the controversies over products such as “blood diamonds” or fish caught by Asian slaves & sold by US supermarkets, you know supply chains are not only an economic issue but also sometimes a vital social (and sometimes environmental) one. As the white paper warns:

“The choices we make in the marketplace determine which business practices thrive. From a diamond in a mine to a tree in a forest, it is the deepest darkest ends of supply chains that damage so much of the planet and its livelihood.”

Yikes!

Now blockchain can make doing the right thing easier and more profitable:

“Provenance enables every physical product to come with a digital ‘passport’ that proves authenticity (Is this product what it claims to be?) and origin (Where does this product come from?), creating an auditable record of the journey behind all physical products. The potential benefits for businesses, as well as for society and the environment, are hard to overstate: preventing the selling of fake goods, as well as the problem of ‘double spending’ of certifications present in current systems. The Decentralized Application (Dapp) proposed in this paper is still in development and we welcome businesses and standards organizations to join our consortium and collaborate on this new approach to understanding our material world.”

I also love Provenance’s work with blockchain because it demonstrates one of my IoT “Essential Truths,” namely, that we must share data rather than hoard it.  The exact same real-time data that can help streamline the supply chain to get fish to our stores quicker and with less waste can also mean that the people catching it are treated fairly. How cool is that?  Or, as Benjamin Herzberg, Program Lead, Private Sector Engagement for Good Governance at the World Bank Institute puts it in the quote that begins the paper, Now, in the hyper-connected and ever-evolving world, transparency is the new power.

While I won’t summarize the entire paper, I do recommend that you so, especially if blockchain is still new to you, because it gives a very detailed explanation of each blockchain component.

Instead, let’s jump in with the economic benefits of a blockchain and IoT-enabled supply chain, since most companies won’t consider it, no matter what the social benefits, if it doesn’t help the bottom line. The list is long, and impressive:

  • “Interoperable: A modular, interoperable platform that eliminates the possibility of double spending
  • Auditable: An auditable record that can be inspected and used by companies, standards organizations, regulators, and customers alike
  • Cost-efficient:  A solution to drastically reduce costs by eliminating the need for ‘handling companies’ to be audited
  • Real-time and agile:  A fast and highly accessible sign-up means quick deployment
  • Public: The openness of the platform enables innovation and could achieve bottom-up transparency in supply chains instead of burdensome top-down audits
  • Guaranteed continuity:  The elimination of any central operator ensures inclusiveness and longevity” (my emphasis)

Applying it to a specific need, such as documenting that a food that claims to be organic really is, blockchain is much more efficient and economical than cumbersome current systems, which usually rely on some third party monitoring and observing the process.  As I’ve mentioned before, the exquisite paradox of blockchain-based systems is that they are secure and trustworthy specifically because no one individual or program controls them: it’s done through a distributed system where all the players may, in fact, distrust each other:

“The blockchain removes the need for a trusted central organization that operates and maintains this system. Using blockchains as a shared and secure platform, we are able to see not only the final state (which mimics the real world in assigning the materials for a given product under the ownership of the final customer), but crucially, we are able to overcome the weaknesses of current systems by allowing one to securely audit all transactions that brought this state of being into effect; i.e., to inspect the uninterrupted chain of custody from the raw materials to the end sale.

“The blockchain also gives us an unprecedented level of certainty over the fidelity of the information. We can be sure that all transfers of ownership were explicitly authorized by their relevant controllers without having to trust the behavior or competence of an incumbent processor. Interested parties may also audit the production and manufacturing avatars and verify that their “on-chain” persona accurately reflects reality.”

The white paper concludes by also citing an additional benefit that I’ve mentioned before: facilitating the switch to an environmentally-sound “circular economy,” which requires not only tracking the creation of things, but also their usage, trying to keep them out of landfills. “The system proposed in this paper would not only allow the creation (including all materials, grades, processes etc) and lifecycle (use, maintenance etc) to be logged on the blockchain, but this would also make it easy to access this information when products are returned to be assessed and remanufactured into a new item.”

Please do read the whole report, and think how the economic benefits of applying blockchain-enabled IoT practices to your supply chain can also warm your heart.

 

comments: Comments Off on Surprising Benefits of Combining IoT and Blockchain (they go beyond economic ones!) tags: , , , , , , ,

Libelium: flexibility a key strategy for IoT startups

I’ve been fixated recently on venerable manufacturing firms such as 169-yr. old Siemens making the IoT switch.  Time to switch focus, and look at one of my fav pure-play IoT firms, Libelium.  I think Libelium proves that smart IoT firms must, above all, remain nimble and flexible,  by three interdependent strategies:

  • avoiding picking winners among communications protocols and other standards.
  • avoiding over-specialization.
  • partnering instead of going it alone.
Libelium CEO Alicia Asin

Libelium CEO Alicia Asin

If you aren’t familiar with Libelium, it’s a Spanish company that recently turned 10 (my, how time flies!) in a category littered with failures that had interesting concepts but didn’t survive. Bright, young, CEO Alicia Asin, one of my favorite IoT thought leaders (and do-ers!) was recently named best manager of the year in the Aragón region in Spain.  I sat down with her for a wide-ranging discussion when she recently visited the Hub of the Universe.

I’ve loved the company since its inception, particularly because it is active in so many sectors of the IoT, including logistics, industrial control, smart meters, home automation and a couple of my most favorite, agriculture (I have a weak spot for anything that combines “IoT” AND “precision”!) and smart cities.  I asked Asin why the company hadn’t picked one of those verticals as its sole focus: “it was too risky to choose one market. That’s still the same: the IoT is still so fragmented in various verticals.”

The best illustration of the company’s strategy in action is its Waspmote sensor platform, which it calls the “most complete Internet of Things platform in the market with worldwide certifications.” It can monitor up to 120 sensors to cover hundreds of IoT applications in the wide range of markets Libelium serves with this diversified strategy, ranging from the environment to “smart” parking.  The new versions of their sensors include actuators, to not simply report data, but also allow M2M control of devices such as irrigation valves, thermostats, illumination systems, motors and PLC’s. Equally important, because of the potentially high cost of having to replace the sensors, the new ones use extremely little power, so they can last        .

Equally important as the company’s refusal to limit itself to a single vertical market is its commitment to open systems and multiple communications protocols, including LoRaWAN, SIGFOX, ZigBee and 4G — a total of 16 radio technologies. It also provides both open source SDK and APIs.

Why?  As Asin told me:

 

“There is not going to be a standard. This (competiting standards and technology) is the new normal.

“I talk to some cities that want to become involved in smart cities, and they say we want to start working on this but we want to use the protocol that will be the winner.

“No one knows what will be the winner.

“We use things that are resilient. We install all the agents — if you aren’t happy with one, you just open the interface and change it. You don’t have to uninstall anything. What if one of these companies increases their prices to heaven, or you are not happy with the coverage, or the company disappears? We allow you to have all your options open.

“The problem is that this (not picking a standard) is a new message, and people don’t like to listen.  This is how we interpret the future.”

Libelium makes 110 different plug and play sensors (or as they call them, “Plug and Sense,” to detect a wide range of data from sources including gases, events, parking, energy use, agriculture, and water.  They claim the lowest power consumption in the industry, leading to longer life and lower maintenance and operating costs.

Finally, the company doesn’t try to do everything itself: Libelium has a large and growing partner network (or ecosystem, as it calls it — music to the ears of someone who believes in looking to nature for profitable business inspiration). Carrying the collaboration theme even farther, they’ve created an “IoT Marketplace,” where pre-assembled device combinations from Libelium and partners can be purchased to meet the specific needs of niches such as e-health,  vineyards, water quality, smart factories, and smart parking.  As the company says, “the lack of integrated solutions from hardware to application level is a barrier for fast adoption,” and the kits take away that barrier.

I can’t stress it enough: for IoT startups that aren’t totally focused on a single niche (a high-stakes strategy), Libelium offers a great model because of its flexibility, agnostic view of standards, diversification among a variety of niches, and eagerness to collaborate with other vendors.


BTW: Asin is particularly proud of the company’s newest offering, My Signals,which debuted in October and has already won several awards.  She told me that they hope the device will allow delivering Tier 1 medical care to billions of underserved people worldwide who live in rural areas with little access to hospitals.  It combines 15 different sensors measuring the most important body parameters that would ordinarily be measured in a hospital, including ECG, glucose, airflow, pulse, oxygen in

It combines 15 different sensors measuring the most important body parameters that would ordinarily be measured in a hospital, including ECG, glucose, airflow, pulse, blood oxygen, and blood pressure. The data is encrypted and sent to the Libelium Cloud in real-time to be visualized on the user’s private account.

It fits in a small suitcase and costs less than 1/100th the amount of a traditional Emergency Observation Unit.

The kit was created to make it possible for m-health developers to create prototypes cheaply and quickly.

comments: Comments Off on Libelium: flexibility a key strategy for IoT startups tags: , , , , , , ,

Circular Company: Will Internet of Things Spark Management Revolution?

Could the IoT’s most profound impact be on management and corporate organization, not just cool devices?

I’ve written before about my still-being-refined vision of the IoT — because it (for the first time!) allows everyone who needs instant access to real-time data to do their jobs and make better decisions to share that data instantly —  as the impetus for a management revolution.

My thoughts were provoked by Heppelmann & Porter’s observation that:

“For companies grappling with the transition (to the IoT), organizational issues are now center stage — and there is no playbook. We are just beginning the process of rewriting the organization chart that has been in place for decades.”

If I’m right, the IoT could let us switch from the linear and hierarchical forms that made sense in an era of serious limits to intelligence about things and how they were working at thaFor companies grappling with the transition, organizational issues are now center stage—and there is no playbook. We are just beginning the process of rewriting the organization chart that has been in place for decades.t moment, to circular forms that instead eliminate information “silos” and instead give are circular, with IoT data as the hub. 

This article expands on that vision. I’ve tried mightily to get management journals to publish it. Several of the most prestigious have given it a serious look but ultimately passed on it. That may be because it’s crazy, but I believe it is feasible today, and can lead to higher profits, lower operating costs, empowering our entire workforces, and, oh yeah, saving the planet.

Audacious, but, IMHO, valid.  Please feel free to share this, to comment on it, and, if you think it has merit, build on it.

Thanks,

W. David Stephenson


The IoT Allows a Radical, Profitable Transformation to Circular Company Structure

 

by

W. David Stephenson

Precision assembly lines and thermostats you can adjust while away from home are obvious benefits of the Internet of Things (IoT), but it might also trigger a far more sweeping change: swapping outmoded hierarchical and linear organizational forms for new circular ones.

New org charts will be dramatically different because of an important aspect of the IoT overlooked in the understandable fascination with cool devices. The IoT’s most transformational aspect is that, for the first time,

everyone who needs real-time data to do their jobs better or
make better decisions can instantly 
share it.

That changes everything.

Linear and hierarchical organizational structures were coping mechanisms for the severe limits gathering and sharing data in the past. It made sense then for management, on a top-down basis, to determine which departments got which data, and when.

The Internet of Things changes all of that because of huge volumes of real-time data), plus modern communications tools so all who need the data can share it instantly. 

This will allow a radical change in corporate structure and functions from hierarchy: make it cyclical, with real-time IoT data as the hub around which the organization revolves and makes decisions.

Perhaps the closest existing model is W.L. Gore & Associates. The company has always been organized on a “lattice” model, with “no traditional organizational charts, no chains of command, nor predetermined channels of communication.”  Instead, they use cross-disciplinary teams including all functions, communicating directly with each other. Teams self-0rganize and most leaders emerge spontaneously.

As Deloitte’s Cathy Benko and Molly Anderson wrote, “Continuing to invest in the future using yesteryear’s industrial blueprint is futile. The lattice redefines workplace suppositions, providing a framework for organizing and advancing a company’s existing incremental efforts into a comprehensive, strategic response to the changing world of work.”  Add in the circular form’s real-time data hub, and the benefits are even greater, because everyone on these self-organizing teams works from the same data, at the same time.

You can begin to build such a cyclical company with several incremental IoT-based steps.

One of the most promising is making the product design process cyclical. Designers used to work in a vacuum: no one really knew how the products functioned in the field, so it was hard to target upgrades and improvements. Now, GE has found it can radically alter not only the upgrade process, but also the initial design as well:

“G.E. is adopting practices like releasing stripped-down products quickly, monitoring usage and rapidly changing designs depending on how things are used by customers. ‘We’re getting these offerings done in three, six, nine months,’ (Vice-President of Global Software William Ruh said). ‘It used to take three years.’”

New IoT and data-analytics tools are coming on the market that could facilitate such a shift. GE’s new tool, “Digital Twins,” creates a wire-frame replica of a product in the field (or, for that matter, a human body!) back at the company. Coupled with real-time data on its status, it lets everyone who might need to analyze a product’s real-time status (product designers, maintenance staff, and marketers, for example) to do so simultaneously.

The second step toward a cyclical organization is breaking down information silos.

Since almost every department has some role in creation and sales of every product, doesn’t it make sense to bring them together around a common set of data, to explore how that data could trigger coordinated actions by several departments? 

Collaborative big-data analysis tools such as GE’s Predix, SAP’s HANA, and Tableau facilitate the kind of joint scrutiny and “what-if” discussions of real-time data that can make circular teamwork based on IoT-data sharing really achieve its full potential.

The benefits are even greater when you choose to really think in circular terms, sharing instant access to that real-time data not only companywide, but also with external partners, such as your supply chain and distribution network – and even customers – not just giving them some access later on a linear basis.  For example, SAP has created an IoT-enabled vending machine. If a customer opts in, s/he is greeted by name, and may be offered “your regular combination” based on past purchases, and/or a real-time discount. That alone would be neat from a marketing standpoint, but SAP also opened the resulting data to others, resulting in important logistics improvements. Real-time machine-to-machine (M2M) data about sales at the new vending machines automatically reroute resupply trucks to those machines currently experiencing the highest sales. 

With the IoT, sharing data can make your own product or service more valuable. With the Apple HomeKit, you can say “Siri, it’s time for bed,” and the Hue lights dim, Schlage lock closes, and Ecobee thermostat turns down. By sharing real-time IoT data, each of these companies’ devices become more valuable in combinations than they are by themselves.

Hierarchical and linear management is outmoded in the era of real-time data from smart devices. It is time to begin to replace it with a dynamic, circular model with IoT data as its hub.

comments: Comments Off on Circular Company: Will Internet of Things Spark Management Revolution? tags: , , , , , , ,

Smart Infrastructure Logical Top Priority for IoT

The only issue Clinton and Trump can agree on is the need for massive improvements to the nation’s crumbling infrastructure, especially its roads and bridges. But, please, let’s make it more than concrete and steel.

Let’s make it smart, and let’s make it the top priority for the IoT because of the trickle-down effects it will have on everything else in our economy.

Global economist Jeffrey Sachs stated the case eloquently in a recent Boston Globe op-ed, “Sustainable infrastructure after the Automobile Age,” in which he argued that the infrastructure (including not only highways and bridges but also water systems, waste treatment, and the electric grid) shaped by the automotive age has run its course, and must be replaced by one “in line with new needs, especially climate safety, and new opportunities, especially ubiquitous online information and smart machines.”

I’m currently reading Carlo Ratti and Matthew Claudel’s The City of Tomorrow: Sensors, Networks, and the Future of Urban Life, which makes the same argument: “The answer to urban expansion and diffusion — and the host of social consequences that they bring — may be to optimize, rather than increase, transportation infrastructure.”

The IoT is perfectly suited to the needs of a new information-based infrastructure, especially one which must balance promoting the economy and mobility with drastic reductions in greenhouse gasses (transportation produces approximately a third of the U.S.’s  emissions). It can both improve maintenance (especially for bridges) through built-in sensors that constantly monitor conditions and can give advance warning in time to do less-costly and less-disruptive predictive maintenance, and reduce congestion by providing real-time information on current congestion so that real-time alterations to signals, etc., can be made rather than depending on outmoded fixed-interval stoplights, etc.

Sachs points out that infrastructure spending as a percentage of GDP has fallen since the Reagan years, and that it will require much more spending to bring it up to date.

A good place to look for a model is China.  The country already sports the largest concentration of M2M connections in the world: “74 million connections at the end of 2014, representing almost a third of the global base,” much of that in the form of smart bridges, smart rails, and smart grid, and critical because of the country’s rapid economic growth (Ratti cites a Beijing traffic jam that immobilized cars for an astounding 12 days!). Similarly, the government aims to have 95% of homes equipt with smart meters by next year.The country has used its investment in smart infrastructure to build its overall IoT industry’s ability to compete globally.

Sachs argues for a long-term smart infrastructure initiative:

“I propose that we envision the kind of built environment we want for the next 60 years. With a shared vision of America’s infrastructure goals, actually designing and building the new transport, energy, communications, and water systems will surely require at least a generation, just as the Interstate Highway System did a half-century ago.”

He says we need a plan based on three priorities to cope with our current national and global challenges:

“We should seek an infrastructure that abides by the triple bottom line of sustainable development. That is, the networks of roads, power, water, and communications should support economic prosperity, social fairness, and environmental sustainability. The triple bottom line will in turn push us to adopt three guiding principles.

First, the infrastructure should be “smart,” deploying state-of-the-art information and communications technologies and new nanotechnologies to achieve a high efficiency of resource use.

Second, the infrastructure should be shared and accessible to all, whether as shared vehicles, open-access broadband in public areas, or shared green spaces in cities.

Third, transport infrastructure should promote public health and environmental safety. The new transport systems should not only shift to electrical vehicles and other zero-emission vehicles, but should also promote much more walking, bicycling, and public transport use. Power generation should shift decisively to zero-carbon primary energy sources such as wind, solar, hydro, and nuclear power. The built environment should be resilient to rising ocean levels, higher temperatures, more intense heat waves, and more extreme storms.”

The IoT, particularly because of its ability to let us share real-time data that in turn can regulate the infrastructure, is ideally suited to this challenge. It’s time for Congress to not only spend on infrastructure but to do so wisely.

The result will be not only the infrastructure we need, but also a more robust IoT industry in general.

 

comments: Comments Off on Smart Infrastructure Logical Top Priority for IoT tags: , , , ,

High-speed 3D Printer & IoT Could Really Revolutionize Design & Manufacturing

There’s a new high-speed 3D printer on the horizon which, coupled with the IoT, could really revolutionize product design and manufacturing.

I’ve raved in the past about 3D printing’s revolutionary potential, but I’ll admit I was still thinking primarily in terms of rapid prototyping and one-off repair parts.  Now, according to Bloomberg, HP is going to transfer its ink-jet printer expertise to the 3D printer field, with a $130,000 model set for release later this year that, for the first time, could make 3D printing practical and affordable for large-scale manufacturing, with “parts at half the expense and at least 10 times faster than rival printers — and likely [using] lower-cost materials.”

Combined with the IoT, that would go a long way toward making my “precision manufacturing” vision a reality, with benefits including less waste, streamlined products (a single part replacing multiple ones that previously had to be combined into the final configuration),  factories that are less reliant on outside parts and encouraging mass customization of products that would delight customers. 

Customers are already lining up, and see manufacturing-scale 3D printing as a game-changer:

Jabil Circuit Inc. [itself a digital supply-chain innovator] plans to be an early adopter of HP’s device, printing end plastic parts for aerospace, auto and industrial applications that it currently makes using processes such as injection molding, John Dulchinos, vice president of digital manufacturing at the electronics-manufacturing service provider, said in an interview.

“‘We have use cases in each of these segments,’ Dulchinos said. ‘Parts that are in hundreds or thousands or tens of thousands of units — it’s cheaper to 3D print them than mold them.’”

Other HP partners in the venture include BMW, Nike, and and Johnson & Johnson. The article cites research by Wohlers Associates predicting that manufacturing using 3D printers could “eventually grab at least 5 percent of the worldwide manufacturing economy, and translate into $640 billion in annual sales.”

3D Systems is also making the transition to large-scale 3D printing.

As I’ve written before in regard to GE’s leadership in the field, toss in some nanotech on the side, and you’ve really got something.

 

comments: Comments Off on High-speed 3D Printer & IoT Could Really Revolutionize Design & Manufacturing tags: , , , , , , ,

Brexit and the IoT: Let’s Capitalize on the Opportunity, Not Wallow in Despair

Wow: as the old Dinah Washington ditty went, “What a Difference a Day Makes.” Since last Thursday, I doubt even the most diehard IoT zealots have thought about anything but Brexit and its implications.  Now that we’ve had a little time to reflect and digest exactly how dire the possible problems are, I’d like to suggest we look at the bright side, and think the IoT could play a major role in improving everyone’s life in the future — not just the economic elites.

Wei ji: crisis combines danger and opportunity

Wei ji: crisis combines danger and opportunity

I used to be a corporate crisis manager, called in when major corporations had done amazingly stupid things and their reputations and sometimes even their survival was in question. For those occasions, I kept a battered greeting card in my briefcase with the calligraphy for wei ji, the Chinese ideogram for crisis. I’d point out that it c0mbined danger — that was obvious! — with the less-obvious one for opportunity. I still believe that, even in the global confusion and concern resulting from Brexit, and I think there’s a role for the IoT in the new world order.

Above all, this should be a wake-up call for the global economic and political elites that, going forth, change must benefit everyone, not just them.

When it comes to the IoT, that means that it can’t be yet another excuse for automating jobs out of existence, but must instead be a way of empowering workers and creating new opportunities:

  • One that occurred to me is near & dear to my heart, because I thought of a primitive version 25 years ago: creating 30″ high 4′ x 8′ garden “boxes” planted using Mel Bartholomew’s “Square Foot Gardening” methods, that would allow people worldwide to grow their own veggies in very small spaces.  Add in IoT water sensors so that the beds could be watered precisely when and in the amount needed, and people everywhere could become self-sufficient (e-mail me if you’re interested in commercializing the approach)!  It would be the cheapie’s variation on the neat, but costly, Grove Labs home ag solution.
  • smart asthma inhaler

    smart asthma inhaler

    Increasingly, global populations will be centered in cities, so the whole smart cities approach will improve everyone’s quality of living by cutting down traffic, reducing municipal operating costs, and improving public health. Even fat cats get upset when their limos are stuck in traffic, so this is a win-win.
    One of my favorite examples of the smart city approach is the asthma inhaler cum GPS that automatically alerts public health authorities when a user — most frequently, sadly, a low-come minority person — uses the inhaler, allowing them to identify dirty air “hot spots” where cleanup efforts need to be focused.

  • I’ve always been impressed about the outside-the-box mobile device apps coming out of Africa that make their lack of conventional infrastructure into an advantage. One of the coolest examples of that when it comes to the IoT is the example INEX’s Chris Rezendes told me about: how Grundfos, the world’s leading pump company, releases the data from senors on its pumps for village water supplies in Africa and some smart guys have come up with an app that allows the village women to check in advance whether the village well is working before they trudge miles to get the watch (which, BTW, I hope they’re carrying back in these way-cool appropriate technology rolling water carriers, the “Hippo”).

  • Also, the IoT could empower assembly-line workers and others if smart managers realize that they too should be among those sharing real-time IoT data: yes, a lot of IoT data can be used on a M2M basis so one machine’s status will regulate another’s, but there’s also a potential role for workers, with their years of experience and horse-sense, using that data to fine-tune processes themselves to optimize efficiency. Artificial Intelligence is great, but I still think there’s a role for enlightened humans, even if they don’t have a lot of education and prestige within the corporation.

Those are just a few ideas on how the IoT might be used to improve everyone’s lot in the coming years and undermine the current status quo that benefits only a few.  Let me know if you have ideas on how to foster this revolution and make Brexit the catalyst for positive change.

 

 

comments: Comments Off on Brexit and the IoT: Let’s Capitalize on the Opportunity, Not Wallow in Despair tags: , , , , , , ,

The Internet of Things Enables Precision Logistics (& Could Save Planet!)

A degree of precision in every aspect of the economy impossible before the IoT is one of my fav memes, in part because it should encourage companies that have held back from IoT strategies to get involved now (because they can realize immediate benefits in lower operating costs, greater efficiency, etc.), and because it brings with it so many ancillary benefits, such as reduced environmental impacts (remember: waste creation = inefficiency!).

       Zero Marginal Cost Society

Zero Marginal Cost       Society

I’m reminded of that while reading Jeremy Rifkin’s fascinating Zero Marginal Cost Economy which I got months ago for research in writing my own book proposal and didn’t get around to until recently.  I’d always heard he was something of an eccentric, but, IMHO, this one’s brilliant.  Rifkin’s thesis is that:

“The coming together of the Communications Internet with the fledgling Energy Internet and Logistics Internet in a seamless twenty-first-century intelligent infrastructure, “the Internet of Things (IoT),” is giving rise to a Third Industrial Revolution. The Internet of Things is already boosting productivity to the point where the marginal cost of producing many goods and services is nearly zero, making them practically free.”

Tip: when the marginal cost of producing things is nearly zero, you’re gonna need a new business model, so get this book!

At any rate, one of the three revolutions he mentioned was the “Logistics Internet.”

I’m a nut about logistics, especially as it relates to supply chain and distribution networks, which I see as crucial to the radically new “circular enterprise” rotating around a real-time IoT data hub. Just think how efficient your company could be if your suppliers — miles away rather than on the other side of the world, knew instantly via M2M data sharing, what you needed and when, and delivered it at precisely the right time, or if the SAP prototype vending machine notified the dispatcher, again on a M2M basis, so that delivery trucks were automatically re-routed to machine that was most likely  to run out first!

I wasn’t quite sure what Rifkin meant about a Logistics Internet until I read his reference to the work of Benoit Montreuil, “Coca-Cola Material Handling & Distribution Chair and Professor” at Georgia Tech, who, as Rifkin puts it, closes the loop nicely in terms of imagery:

“.. just as the digital world took up the superhighway metaphor, now the logistics industry ought to take up the open-architecture metaphor of distributed Internet communication to remodel global logistics.”

Montreuil elaborates on the analogy (and, incidentally, places this in the context of global sustainability, saying that the current logistics paradigm is unsustainable), and paraphrases my fav Einstein saying:

“The global logistics sustainability grand challenge cannot be addressed through the same lenses that created the situation. The current logististics paradigm must be replaced by a new paradigm enabling outside-the-box paradigm enabling meta-systemic creative thinking.”

wooo: meta-systemic creative thinking! Count me in!

Montreuil’s answer is a “physical Internet” for logistics, which he says is a necessity not only because of the environmental impacts of the current, inefficient system (such as 14% of all greenhouse gas emissions in France), but also its ridiculous costs, accounting for 10% of the US GDP according to a 2009 Department of Transportation report!  That kind of waste brings out my inner Scotsman!

Rifkin cites a variety of examples of the current system’s inefficiency based on Montreuil’s research:

  • trucks in the US are, on average, only 60% full, and globally the efficiency is only 10%!
  • in the US, they were empty 20% of miles driven
  • US business inventories were $1.6 trillion as of March, 2013 — so much for “just-in-time.”
  • time-sensitive products such as food, clothes and medical supplies are unsold because they can’t be delivered on time.

Montreuil’s “physical Internet” has striking parallels to the electronic one:

  • cargo (like packets) must be packaged in standardized module containers
  • like the internet, the cargo must be structured independently of the equipment, so it can be processed seamlessly through a wide range of networks, with smart tags and sensors for identification and sorting (one of the first examples of the IoT I wrote about was FedEx’s great SenseAware containers for high-value cargo!)

With the Logistics Internet, we’d move from the old point-to-point and hub-and-spoke systems to ones that are “distributed, multi-segment, intermodal.” A single, exhausted, over-worked (and more accident-prone) driver would be replaced by several. It’s a  little counter-intuitive, but Montreuil says that while it would take a driver 240 hours to get from Quebec to LA under the current system, instead 17 drivers in a distributed one would each drive about 3 hours, and the cargo would get there in only 60 hours.

Under the new system, the current fractionated, isolated warehouse and distribution mess would be replaced by a fully-integrated one involving all of the 535,000 facilities nationwide, cutting time and dramatically reducing environmental impacts and fuel consumption.

Most important for companies, and looping back to my precision meme, “Montreuil points out that an open supply network allows firms to reduce their lead time to near zero if their stock is distributed among some of the hundreds of distribution centers that are located near their final buyer market.” And, was we have more 3-D printing, the product might actually be printed out near the destination. How cool is that?

Trucking is such an emblematic aspect of the 20th-century economy, yet, as with the neat things that Union Pacific and other lines are doing with the 19th-century’s emblematic railroads, they can be transformed into a key part of the 21-st century “precision economy” (but only if we couple IoT technology with “IoT thinking.”

Now let’s pick up our iPads & head to the loading dock!


 

PS: I’ll be addressing this subject in one of my two speeches at the SCM2016 Conference later this month. Hope to see you there! 

 

FedEx package…

comments: Comments Off on The Internet of Things Enables Precision Logistics (& Could Save Planet!) tags: , , , , , , , ,
http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management