Outside the (Shoe) Box Internet of Things Thinking!

Posted on 30th March 2015 in design, Internet of Things, retail, strategy, wearables

Could someone please forward this to Carrie Bradshaw? I don’t think she reads this blog, but she’d definitely be interested!

I’ve got to confess that I’m usually oblivious to the world of fashion — or appalled by it (there’s a current ad by Gucci in one of my wife’s magazines that frankly scares me: not sure which looks more weird: the emaciated, heavily-made-up model or the dress!), but this one caught my eye as a way women can have a more versatile wardrobe that takes up less space and saves them money!  Neat, huh?

Equally important, it may be the precursor of a wide range of mass-customized Internet of Things devices of all types that are more personal, create new revenue streams, and provide valuable feedback to the manufacturer on customer tastes.

Ishuu, a Lithuanian startup, is creating a new line of très stylish women’s shoes, Volvorii, that include a strip of e-ink material (similar to a Kindle screen) that can be customized by the owner simply by opening an app on her phone! The requisite electronics are housed in the heels.

As of this writing, the Volvorii Indegogo campaign has raised $34,000 of its $50,000 target, with 14 days to go. If I didn’t send every spare dollar to Loyola University – Maryland for my son’s tuition, I think I’d drop a few on this one: it really intrigues me!

If Ishuu is smart, I’d suggest that they throw open the API for the shoes, and allow bright young fashion design students to submit new designs for the insert.

As for those IoT-based products that are more personal, create new revenue streams, and provide valuable feedback to the manufacturer on customer tastes, here are a few more exciting examples to get you noodling about how you might redesign your own products to capitalize on this potential:

What I love about this as a consumer is that we will no longer have to make difficult binary choices between products: instead of either/or, it will be this/and this (in the case of the Watch and these shoes, I love that there will be so many choices that you’ll be able to change your choice on the fly depending on your mood or other factors.  I’m going to choose toe-tapping Mickey when I’m with my grandchildren, the Utility to keep track of biz during the day, and the Simple for more dignified evening wear.

These fall into my What Can You Do Now That You Couldn’t Do Before category. It’s going to take us a while to ditch our old, more limited mindsets, but the rest will be better for everyone.

comments: Comments Off on Outside the (Shoe) Box Internet of Things Thinking! tags: , , , , , , , ,

Smart Aging: Kanega watch for seniors Kickstarter campaign ends today

“Independence with Dignity” is the motto for Jean Anne Booth’s Kanega Watch, which is in the last day of its Kickstarter campaign.

I’m not crazy about it, but in general I like what you see, and hope you get on board.  It addresses three major concerns for the elderly:

Kanega watchlike what I see, and hope you’ll get on board!  It’s designed to deal with three critical aging concerns:

  • falls
  • medication reminders
  • wandering.

I met the woman behind it at a conference in Boston last Summer, and even though the prototype at that point looked very unappealing, this looks more promising.

I’m in the process of creating a list of 10 objective criteria for evaluating devices and apps that fit with my “Smart Aging” paradigm shift, which combines Quantified Self devices to encourage healthy habits and change your relationship with your doctor into a partnership, and smart home devices, which make it easier to manage your home when elderly, so you can “age in place.”  Here’s how it stacks up against my criteria (which, BTW, are still in development — comments welcomed). Bear in mind that I haven’t seen current prototype, and the site doesn’t answer all of my questions. :

Is it easy to use?

  1. Does it give you a choice of ways to interact, such as voice, text or email?
  2. Does it give you reminders?
  3. Is it easy for you to program, or allow someone else to do it remotely?
  4. Does it have a large display and controls?
  5. Is it intuitive?
  6. Does it require professional installation?
  7. Is it flexible: can it be adjusted? Is it single purpose, or does it allow other devices to plug in and create synergies?

YES: voice-activated, rather than requiring buttons. No programming.


Does it protect privacy & security?

  1. Is storage local vs. cloud or company’s servers? Is data encrypted? Anomized?
  2. Do you feel creepy using it?
  3. Does it protect against exploitation by scam artists (such as identifying callers)?
  4. Is it password-protected?
  5. Is security “baked in” or an afterthought?

NO CLUE.


Does it complicate your life, or simplify it?

YES: doesn’t require a smartphone to function, and is voice-activated rather than using buttons.

Does it protect privacy and security?

NO CLUE.

 

Is it affordable?

  1. Are there monthly fees? If so, low or high?
  2. Is there major upfront cost?
  3. Does full functioning require accessories?

IFFY: You can get one by contributing $279 to the Kickstarter campaign. If that’s the retail price, it’s a little pricey, but lower than the Apple Watch base, $349, and probably a good price considering the value added services . Didn’t see anything about a monthly fee for the fall reporting & response service.

Does it stigmatize and/or condescend?

  1. Is it stylish, or does the design” shout” that it’s for seniors?
  2. Is the operation or design babyish?
  3. Would younger people use it?

NO: it doesn’t have a stigmatizing button, & uses a familiar form factor (watch).

Does it use open or proprietary standards?

NO CLUE.

 

Is the information shareable if you choose to do so?

NO CLUE.

 

Can you learn something from it to improve your life and empower yourself?

  1. For example, does health data encourage you to exercise more, or eat better?

NO: doesn’t give you feedback, measure your activity, etc.

Does it help you do something you couldn’t do before?

  1. Does it create a new range of services that were simply impossible with past technologies?

YES: The wandering alert (offers directions home) is new. Otherwise, just does some things such as medication alerts and calling for help that other devices have done.

Is it sturdy?

YES.

 

Does it have “loveability” (i.e., connect with the user emotionally)?

(This term was coined by David Rose in Enchanted Objects, and refers to products that are adorable or otherwise bond with the user)

YES: it has a Siri-like voice, which you can name, which gives reminders about taking meds and gives you directions home if you wander.
I’d give it about a 5 out of 10: I wouldn’t call this a must have — I’d like a little more of a multi-purpose tool that combines smart home and Quantified Self functions — like the Apple Watch (again, disclaimer that I work part time at Apple Store — but don’t have any proprietary info.) The watch is a little too clunky looking for me (prefer the Jony Ive-aesthetics of the Apple Watch), but it looks promising — and doesn’t require coupling to a smartphone, which is befuddling to a lot of seniors.

Kickstarter backers will begin receiving their Kanega watches in February 2016, with general market availability in summer 2016. The site doesn’t say anything about price.

Only a few hours left to join the Kickstarter campaign!


Yeah, I couldn’t figure out the names either. Turns out it’s from Cherokee: “Unalii” is “friend”, and “Kanega” is “speak.”  You learn something every day….

comments: Comments Off on Smart Aging: Kanega watch for seniors Kickstarter campaign ends today tags: , , , , ,

I Have Seen the Future of Agriculture & It is the IoT (Grove Labs)

Agriculture is a passion of mine, partially because of environmental concerns, and also because I love veggie gardening. There has been an encouraging trend in the US recently, with the advent of Community Supported Agriculture (CSA) and the localvore movement. However, that’s counterbalanced by the terrible continuing California drought, and the sobering realization that, worldwide, there are more than 805 million who are undernourished. Clearly, we need to produce more food — and do it much more efficiently and in line with natural principles.

Grove Labs Aquaponics system

That’s why I’m so excited about the new Grove Labs system being developed in, of all places, Somerville MA (which has become a start-up haven for ag-related companies through the Greentown Labs incubator. They include Freight Farms [ I will blog about them later..], which is pursuing a similar closed-loop approach on a larger scale, and Apitronics, which presented at one of our Boston IoT Meetups last year.).

It was developed by two young MIT grads, Jamie Byron (who became “obsessed” with the problems of current worldwide agriculture while on an internship) and Gabe Blanchet, who created the primitive precursor of the aquaponics system in their frat house. Now, in its beta testing form (sign up ASAP if you live in the Hub to buy a prototype!), the “Grove” is an integrated ecosystem attractive enough to be placed in your kitchen.

According to The Verge  (which pointed out that dope growers’ experience with hydroponics may have helped Byron and Blanchet, LOL!):

“The Grove system looks like a 6-foot-tall wood cabinet with four LED-lit boxes for plants. Three are smaller, for leafy greens and herbs, and one is larger, for things like tomatoes or peas. On the bottom left is an aquarium whose fish provide fertilizer for the plants. The fish are what make the system ‘aquaponic,’ a particularly organic variant on traditional hydroponics.

….” ‘Essentially we took the philosophy and biology of an actual ecosystem and shrunk it down and put it in a bookshelf tower,’ Blanchet says. The fish produce ammonia in their waste, which gets pumped to the plants, where bacteria convert the ammonia to nitrate. The plants consume the nitrate, filtering the water, which gets returned to the fish. ‘If you keep the system running optimally you can grow plants faster than you can outside,’ says Blanchet.”

A critical component that qualifies the system as an IoT one is the “Grove” app, which will tell owners important information about lighting schedules, when to add nutrients, etc. The all-important sensors will provide critical real-time data about growing conditions and what’s needed.

The Grove isn’t a panacea for world hunger: for one thing, it’s pricey ($2600), although economies of scale when the company is in full swing may bring that down. It also requires involvement by the owner: you can’t just sit there and admire how things grow. You’ll need to actively monitor the app and do routine maintenance. The LED lighting system, as efficient as it may be, won’t work in remote, poor areas where there’s no electricity (but that might come from an nearby PV panel!

Nonetheless, I can see the grove playing a growing (groan, sorry for the pun..) role in meeting the world’s food needs, and, best of all, doing so in a way that capitalizes on one of my key beliefs about the IoT, that it will bring about an era of unprecented precision in use of raw materials, manufacturing, whatever, because of real-time monitoring, and, increasingly, M2M systems where a sensor reading on one device will trigger operation of another. Large-scale farming is also getting more precise due to systems such as John Deere’s FarmSight, so count agriculture as yet another industry that will be revolutionized through the IoT.


The Grove Labs approach really resonated with me because I’ve been using two 8′ x 4′ 30″ high modules for my own veggies for the last twenty years, planted according to engineer/gardener Mel Bartholomew’s great “Square Foot Gardening” system, with varying levels of success. I had grand visions of manufacturing modules from recycled plastics and adding greenhouse-fabric domes to extend the season, and an app to remind owners of when to plant and fertilize but never followed through, so I really admire those who did, and the way they’re incorporating IoT technology.

New Alchemy’s Institute’s “Ark” (in rear)

When I contacted the co-founders, they were unaware that they stand on the shoulders of giants who have developed a natural systems-based approach to agriculture right here in the Bay State, especially John Todd, who (I believe) pioneered the approach with his wonderful New Alchemy Institute on the Cape, where he methodically added new elements — plexiglas water storage, tilapia, etc. — to the passive-solar “Ark” until he had a balanced, self-sustaining system.  John, who has since gone on to develop great natural-systems based wastewater treatment facilities, had a young apprentice, Greg Watson, who went on to become the Commonwealth’s incredibly innovative ag commissioner.

Oh well, it appears these guys have more than reinvented the wheel! Good luck to them.

“Enchanted Objects” — adding delight to the IoT formula

Posted on 21st January 2015 in design, Essential Truths, Internet of Things, marketing, smart home

For good reason, most discussions of opportunities with the Internet of Things focus on the potential to improve businesses’ operating efficiency or creating new revenue streams.

But what if the IoT could also bring out the hidden 6-yr. old in each of us? What if it could allow us to invent — enchanted objects?

That’s the premise of IoT polymath David Rose’s Enchanted Objects: Design, Human Desire, and the Internet of Things.

Enchanted Objects: Design, Human Desire, and the Internet of Things

Rose is both a stalwart of the MIT Media Lab and a pioneering, serial IoT entrepreneur. Oh, and he’s got an impish grin that shows you he is still as delighted at tinkering with things as he was as a little boy in his grandfather’s workshop:

“Grandfather’s tools were constructed and used with a respect for human capabilities and preferences. They fit human bodies and minds. They were a pleasure to work with and to display. They made us feel powerful, more skilled and capable than we were without them. They hung or nestled quietly, each in its place, and never made us feel stupid or overwhelmed. They were, in a word, enchanting.”

Rose fears that’s not the path we’re heading down with most current techno-products, dismissing them as “cold, black slabs … [resulting in a ] colder, more isolated, less humane world. Perhaps it is more efficient, but we are less happy.”  Yea!

By contrast, enchanted objects resonate with our deepest desires:

“The experiences that do enchant us reach into our hearts and souls. They come from the exotic place of  ‘once upon a time.’ They help us realize fundamental human desires. The fantastic technologies we have invented over the centuries , the ones of ancient tales and science fiction, enable us to do things that human beings earnestly want to do but cannot do without a little (or a lot) of help from technology. They make it possible to fly, communicate without words, be invisible, live forever, withstand powerful forces, protect ourselves from any harm, see farther and travel faster than the greatest athletes. They are tools that make us incredible, supercapable versions of ourselves. These are the visions and stories of our most beloved authors of fiction and fantasy — Tolkien and C. S. Lewis and J. K. Rowling and the Grimms — and the realities of fantastic characters such as Cinderella, Dick Tracy, James Bond, Superman, and Wonder Woman. The designers creating enchanted objects must, therefore, think of themselves as something more than manipulators of materials and masters of form. They must think beyond pixels, connectivity, miniaturization , and the cloud. Our training may be as engineers and scientists, but we must also see ourselves as wizards and artists, enchanters and storytellers, psychologists and behaviorists.”(my emphasis).

Rose discusses a number of the products he’s designed, such as the Ambient Orb, which can be hacked to unobtrusively (the physiological phenomenon that makes them work is called “pre-attentive processing” in case you’re looking for a term to throw around at a cocktail party…) display all sorts of information, from stock market trends to energy consumption and the Ambient Umbrella, whose handle glows if rain is predicted (that one hasn’t been a big success, which I predicted — it’s as easy to lose an expensive, “smart” umbrella as a $10 one. I prefer the IFTTT recipe that has your HUE lights blink blue if rain is predicted, reminding you to take your utterly conventional, cheap umbrella…), as well as one of my favorites, the Vitality Glow Cap, which can reduce the billions in wasted medical spending attributable to people not taking their prescriptions.

Skype Cabinet

And then there’s one that every child or grandparent will love, the Skype Cabinet, a square that sits in your living room, and, when the door is opened, shazaam, there is your grandchild or grandparent, instantly connected with you via Skype. Enchantment indeed!

However, the real meat of the book is his methodology for those of us to whom enchantment doesn’t come as naturally. First, Rose lists seven basic human drives that designers should try to satisfy: omniscience, telepathy (human-to-human communication), safekeeping, immortality, teleportation (that’s high on my personal list after my recent up-close-and-personal encounters with rogue deer.), and expression.

Then Rose explains how technology, especially sensors, will allow meeting these desires through products that sense their surroundings and can interact with us.  In terms of my IoT “Essential Truths,” I’d classify enchanted objects as exemplifying “What Can You Do Now That You Couldn’t Do Before,” because we really couldn’t interact with products in the past.  Other examples in this category that I’ve cited before range from the WeMo switches that helped me make peace with my wife and the life-saving Tell-Spec that lets you find food allergies.

Other thought-provoking sections of the book include “Seven Abilities of Enchantment,  “Five Steps on the Ladder of Enchantment,” and “Six Future Fantasies,” the latter of which is must reading for product designers and would-be entrepreneurs who want to come up with fundamentally new products that will exploit the IoT’s full potential for transformation.

The other day I finally met with Mahira Kalim, the SAP IoT marketing director who whipped my thinking into shape for the “Managing the Internet of Things Revolution” i-guide.  She asked me for examples of the kind of radical transformation through the IoT that are already in existence.  I suspect that some of Rose’s inventions fall into that category, but, more important, Enchanted Objects provides the roadmap and checklist for those who want to create the next ones!  Get it, devour it, and profit from it!

comments: Comments Off on “Enchanted Objects” — adding delight to the IoT formula tags: , , , , , , , ,

Good Checklist for Creating #IoT Strategy

Still not ready to tackle an analysis of the November Harvard Business Review cover story, by PTC CEO Jim Heppelmann and Professor Michael Porter, on How Smart, Connected Products Are Transforming Competition, but I did want to do a shout-out to a companion piece, Digital Ubiquity: How Connections, Sensors, and Data Are Revolutionizing Business, by two HBS profs, Marco Iansiti and Karim R. Lakhani.

In particular, I wanted to suggest that you use the last section of the paper, “Approaching Digital Ubiquity,” as a checklist of priorities to create your own IoT strategy (I’d be remiss if I didn’t also mention my “Managing the Internet of Things Revolution” i-guide and this blog’s “Essential Truths” as references as well..).

Here are their points, and my reflections on them:

  1. Apply the digital lens to existing products and services.
    This is a profound transformation, because we’ve become so accustomed to working around the gaps in our knowledge that were the reality in an analog world.As Iasanti and Lakhani say, you now need to ask:
    “What cumbersome processes in your business or industry are amenable to instrumentation and connectivity?
    Which ones are most challenging to you or your customers?”
  2. Connect your existing assets across companies.
    We “get” competition, but collaboration, especially with competitors, is a little less instinctive.

    “If you work in a traditional analog setting, examine your assets for new opportunities and look at other industries and the start-up world for new synergies. Your customer connections are especially valuable, as are your knowledge of customers’ needs and the capabilities you built to meet knowledge of customers’ needs and the capabilities you built to meet them. Nest is connecting with public utilities to share data and optimize overall energy usage. If you work in a start-up, don’t just focus on driving the obsolescence of established companies. Look at how you can connect with and enhance their value and extract some of it for yourself.knowledge of customers’ needs and the capabilities you built to meet them. Nest is connecting with public utilities to share data and optimize overall energy usage. [my note: this is a great example of thinking expansively: even though your product is installed in individual homes, if data can be aggregated from many homes, it can be of real value on a macro scale as well. The smart grid is a great example of bringing all components of energy production, distribution, and use together into an integrated system.]  If you work in a start-up, don’t just focus on driving the obsolescence of established companies. Look at how you can connect with and enhance their value and extract some of it for yourself.”

  3. Examine new modes of value creation.
    Just because you make tangible products doesn’t mean that you’re limited to just selling those products to make money in the future. You’ll be able to make money by selling customers actionable data that will allow them to improve productivity and reduce maintenance. Perhaps you’ll stop selling altogether, and make money instead by making your products the cornerstone of profitable services.

    Begin to ask:
    “What new data could you accumulate, and where could you derive value from new analytics?”
    “How could the data you generate enable old and new customers to add value?”

  4. Consider new value-capture modes.
    “Could you do a better job of tracking the actual value your business creates for others?”
    “Could you do a better job of monetizing that value, through either value-based pricing or outcomes-based models?”
  5. Use software to extend the boundaries of what you do.
    You will still make products, as in the past, and that gives you a tangible basis for the future. But you’ll need a digital component as well.

    “Digital transformation does not mean that your company will only sell software, but it will shift the capability base so that expertise in software development becomes increasingly important. And it won’t render all traditional skills obsolete. Your existing capabilities and customer relationships are the foundations for new opportunities. Invest in software-related skills that complement what you have, but make sure you retain those critical foundations. Don’t jettison your mechanical engineering wizards—couple them with some bright software developers so that you can do a better job of creating and extracting value.”

    What do you think?  Any more questions you’d add? Let me know!

comments: Comments Off on Good Checklist for Creating #IoT Strategy tags: , , , ,

Lifting the Veil After the Sale: another IoT “Essential Truth”

Count me among those who believe the Internet of Things will affect every aspect of corporate operations, from manufacturing to customer relations.

Perhaps one of the most dramatic impacts will be on the range of activities that take place after the sale, including maintenance, product liability, product upgrades and customer relations.

In the past, this has been a prime example of the “Collective Blindness” that afflicted us before the IoT, because we basically had no idea what happened with our products once they left the factory floor.

In fact, what little data we did have probably served to distort our impressions of how products were actually used. Because there was no direct way to find out how the products were actually used, negative data was probably given exaggerated weight: we heard negative comments (warrantee claims, returns, liability lawsuits, etc.), loud and clear, but there was no way to find out how the majority of customers who were pleased with their products used them.

That has all changed with the IoT.

Now, we have to think about products  in totally new ways to capitalize on the IoT, and I think this merits another “Essential Truth” about the IoT:

Everything is cyclical.

Think about products — and industrial processes in general — in the old industrial system. Everything was linear: perhaps best exemplified by Henry Ford’s massive River Rouge Complex, the world’s largest integrated factory, and the epitome of integrated production.

Ford River Rouge Complex

“Ford was attempting to control and coordinate all of the necessary resources to produce complete automobiles.  Although Ford’s vision was never completely realized, no one else has come so close, especially on such a large scale.  His vision was certainly a success, one indication of this is the term Fordism, which refers to his style of mass-production, characterized by vertical integration, standardized products and assembly-line production”

At “The Rouge,” raw materials (literally: it had its own coke ovens and foundry!)  flowed in one side, and completed cars flowed out the other, bound for who knows where. Once the cars were in customers’ hands, the company’s contact was limited to whatever knowledge could be gleaned from owners’ visits to dealers’ service departments, irate calls from customers who had problems, and (in later days) safety recalls and/or multi-million dollar class-action lawsuits.

That linear thinking led to a terrible example of the “Collective Blindness” phenomenon that I’ve written about in the past: who knew how customers actually thought about their Model T’s? How did they actually drive them? Were there consistent patterns of performance issues that might not have resulted in major problems, but did irritate customers?

Sure, you could guess, or try to make inferences based on limited data, but no one really knew.

Fast forward to the newest auto manufacturer, Tesla, and its factory in Fremont, California (aside: this massive building — Tesla only uses a portion, used to be the NUMMI factory, where Chevy built Novas and Toyota built Corollas. Loved the perceptual irony: exactly the same American workers built mechanically identical cars [only the sheet metal varied] but the Toyotas commanded much higher prices, because of the perception of “Japanese quality.” LOL. But I digress….).

Tesla doesn’t lose track of its customers once the cars leave the plant.

Tesla assembly line

In fact, as I’ve written before, these “iPhones on wheels” are part of a massive cyclical process, where the cars’ on-board communications constantly send back data to the company about how the cars are actually doing on the road. And, when need be, as I mentioned in that prior post, the company was able to solve a potentially dangerous problem by simply sending out a software patch that was implemented while owners slept, without requiring customer trips to a repair shop!

I imagine that the company’s design engineers also pour over this data to discern patterns that might indicate elements of the physical design to tweak as well.

Of course, what would a blog post by me about IoT paradigm shifts be without a gratuitous reference to General Electric and its Durathon battery plant (aside to GE accounting: where should I send my W-9 and invoice so you can send me massive check for all the free PR I’ve given you? LOL)?

I can’t think of a better example of this switch to cyclical thinking:

  • including sensors into the batteries at the beginning of the production process rather than slapping them on at the end means that the company is actually able to monitor, and fine tune, the manufacturing process to optimize the critical chemical reaction. The same data allows the workers to remove defective batteries from the assembly line, so that every battery that ships works.
  • once in the field (and, remember: these batteries are deployed in incredibly remote areas where it might take days for a repair crew to reach and either service or repair them) the same sensors send back data on how the batteries are functioning. I don’t know about the specifics in the case of these batteries, but GE has actually created new revenue streams with other continuously-monitored devices by selling this data to customers who can use it (because the data is shared on a real-time basis, not just historically) to optimize performance.

Elsewhere, as I’ve mentioned before, General Electric’s William Ruh has said that being able to lift the veil of “Collective Blindness” through feedback from how customers actually use their products has even revolutionized their product design process:

“… G.E. is adopting practices like releasing stripped-down products quickly, monitoring usage and rapidly changing designs depending on how things are used by customers. These approaches follow the ‘lean start-up’ style at many software-intensive Internet companies. “’We’re getting these offerings done in three, six, nine months,’ he (Ruh) said. ‘It used to take three years.’”

Back in the ’90’s, I used to lecture and consult on what I called “Natural Wealth,” a paradigm shift in which we’d find all the inspiration we needed for an information-based economy in a table-top terrarium that embodies billion-year-old  principles of nature:

  • embrace chaos, don’t try to control it. (i.e., use open systems rather than proprietary ones)
  • create symbiosis: balance competition with cooperation (IFTTT.com, where you release your APIs to create synergistic mashups with others).
  • close the loop.

With the IoT, we can finally put that last principle into practice, substituting cyclical processes for linear ones.  At long last, the “systems dynamics” thinking pioneered by Jay Forrester and his disciple, Peter Senge, can become a reality. Here’s a closing tip to make that possible: in addition to SAP’s HANA or other analytics packages, look to systems dynamics software such as isee systems’  iThink to model your processes and transform linear into cyclical ones. Now get going: close the loop!

Is GE the future of manufacturing? IoT + nanotech + 3D-printing

The specific impetus for this post was an article in The Boston Globe about heart stents that fit perfectly because they’re 3-D printed individuallly for each patient.

GE jet engine 3-D-printed fuel nozzle

That prompted me to think of how manufacturing may change when three of my favorite technologies — nanotech, 3-D printing and the Internet of Things — are fully mature and synergies begin (as I’m sure they will) to emerge between the three.

I’m convinced we’ll see an unprecedented combination of:

  • waste elimination: we’ll no longer do subtractive processes, where a rough item is progressively refined until it is usable.  Instead, products will be built atom-by-atom, in additive processes where they will emerge exactly in the form they’re sold.
  • as with the stents, products will increasingly be customized to the customer’s exact specifications.
  • the products will be further fine-tuned based on a constant flow of data from the field about how customers actually use them.

Guess what?  The same company is in on the cutting edge of all three: General Electric (no, I’m not on their payroll, despite all my fawning attention to them!):

  • Their Industrial Internet IoT initiative is resulting in dramatic changes to their products, with built-in sensors that relay data constantly to GE and the customer about the product’s current status, allowing predictive maintenance practices that cuts repair costs, optimizing the device’s performance for more economical operations, and even allowing GE to switch from selling products to leasing them, with the lease price determined dynamically using factors such as how many hours the products are actually used.  Not only that, but they practice what they preach, with 10,000 sensors on the assembly line at their Durathon battery plant in Schenectady, plus sensors in the batteries themselves, allowing managers to roam the plant with an iPad to get instant readings on the assembly line’s real-time operation, to fine-tune the processes, and to be able to spot defective batteries while they are still in production, so that 100% of the batteries shipped will work.
    They’re also able to push products out the door more rapidly and updating them quicker based on the huge volumes of data they gather from sensors built into the products: “… G.E. is adopting practices like releasing stripped-down products quickly, monitoring usage and rapidly changing designs depending on how things are used by customers. These approaches follow the ‘lean start-up’ style at many software-intensive Internet companies. “’We’re getting these offerings done in three, six, nine months,’ he [William Ruh] said. ‘It used to take three years.’”
  • They’ve made a major commitment to 3-D printing, with 100,000 3-D printed parts scheduled to be built into their precision LEAP jet engines — a big deal, since there’s not a great deal of fault tolerance in something that may plunge to the earth if it malfunctions! As Bloomberg reported, “The finished product is stronger and lighter than those made on the assembly line and can withstand the extreme temperatures (up to 2,400F) inside an engine.”  They’re making major investments to boost the 3-D printers’ capacity and speed.  Oh, and did I mention their precedent-setting contest to crowd-source the invention of a 3-D printed engine mount?
  • They’re also partnering with New York State on perhaps the most visionary technology of all, nanotech, which manipulates materials on the molecular level. GE will focus on cheap silicon carbide wafers, which beat silicon chips in terms of efficiency and power, leading to smaller and lighter devices.

GE is the only member of the original Dow-Jones Index (in 1884) that still exists. As I’ve said before, I’m astounded that they not only get it about IoT technology, but also the new management practices such as sharing data that will be required to fully capitalize on it.

Thomas A. Edison is alive and well!

Smart Washing Machine: another example of “just because you can doesn’t mean you should”

When I buy the much-hyped smart refrigerator, you’ll know I’ve officially gone around the bend, and have officially surrendered to IoT hype: it makes sense for those who buy a ton of processed foods with bar codes on them, but I just can’t see the value to those of us who buy a lot of label-less veggies from farmers markets, for example.

In a close second place on my personal list of those IoT devices that violate one of my Essential Truths of the IoT: “just because you can do something doesn’t mean you should” would be a smart washing machine.

As the Washington Post wrote about Whirlpool’s $1,699 “smart” washer,

“Few expected ‘smart’ machines would fly off the shelves. They’re expensive, and Americans don’t typically replace their washers and dryers all that often. But analysts say the problem is bigger than that. Today’s smartest washer and dryer set won’t fold your clothes, erase wrinkles or stop you from mixing reds and whites. It won’t even move a load from one machine to the other. So what’s the point?”

I know there are going to be some false starts in creating IoT-enabled products that really do provide value, and good for Whirlpool for experimenting, but I do wonder whether something we used to call “common sense” is sorely lacking in some companies’ IoT decision-making.

IMHO, it would really be helpful if my washer and dryer could go on late at night to take advantage of utilities’ off-peak pricing as part of their smart grid initiatives (to their credit, as you’ll see from the photo of the companion smart dryer, a smart grid link is part of these appliances)

smart grid button on Whirlpool dryer

. However, I suspect that would be easily possible if the utilities just published APIs so some smart IFTTT user could create a “recipe” that would turn on an utterly-conventional washer that was plugged into a WeMo smart plug (hmm: did a search for that, and found a recipe that would automatically turn off a washer plugged into a WeMo if a Nest alarm detected a fire: nice, but rather low on my list of what I’d want to have done in case of a fire….).

So, yea, smart appliances, but let’s also make sure that one of the questions companies ask before committing to a really expensive initiative is: “do we really need it?”

comments: Comments Off on Smart Washing Machine: another example of “just because you can doesn’t mean you should” tags: , , ,

Thermostats: yet another example why open standards win with #IoT

Despite my passion for all things Apple and the incredible functionality that comes from Tim Cook’s passion for integrating all parts of the ecosystem seamlessly (and, as I’ve noted in prior disclaimers, my part-time work at the Apple Store ..), I don’t think there’s any doubt when it comes to the Internet of Things that open standards win out.

That’s because they meet the test of my favorite Essential Truth, “who else can use this data?”

It goes back to my Data Dynamite book and my work with Vivek Kundra when he was opening up data in the District of Columbia before becoming the US CIO: when you share data, you empower end users and can go beyond your own developers’ talents and interests, to harvest others’ interests and developments.

opower_sHere’s a great example. Opower’s OpenStat API enables the electric  industry’s only open thermostat management platform. It allows any smart thermostat provider to participate in existing Opower-managed utility thermostat programs. It combines energy usage, billing, parcel and weather data to engage customers, drive measurable energy efficiency, and deliver reliable demand response.  It already has 95 partner utilities, 50 million (really? that sounds high to me…) homes in 35 states sharing data.

By contrast, Nest (which of course was created by Apple alums) had to create a specific API to allow sharing its data. 

This API is Nest’s answer to the Learning Thermostat’s lack of Z-Wave or ZigBee wireless communication. Nest came under fire from the CEDIA crowd when the Learning Thermostat launched since it wouldn’t work within even $100k home automation systems. The thermostat wasn’t friendly with others. It wouldn’t talk to other home automation products using the legacy home automation protocols. This API could change everything.

The jury’s still out — and it will really be interesting to see how many other companies decide to integrate with Apple’s new Health and Home apps. On one hand, a proliferation of standards just retards more creative API mashups, a la IFTTT (my heros!!). On the other, seamless integration and ease-of-use, the Apple hallmarks, could go a long way to ingraining the IoT into consumers’ daily lives.

What do you think?

 

comments: Comments Off on Thermostats: yet another example why open standards win with #IoT

Live-blogging @ Wearables + Things

 

Just arrived @ Wearables + Things conference (I’ll speak on “Smart Aging” tomorrow). Hmm: there’s one noteworthy player absent from the conference: those guys from Cupertino. Wonder why they’re not there (perhaps in stealth mode??)

Conference already underway, about to have 2 new product reveals!

  1. iStrategyLabs, “Dorothy,” connects your shoe to your phone. You’re stuck in a conversation, need way to leave. What if you could click your heels together three times (get it, Dorothy???) and you’d get a bail-out call (or you can trigger an IFTTT recipe or call for a pizza…). “Ruby” goes in shoe.  OK, this ain’t as significant as either the Lechal haptic shoe, but who knows how it might evolve…
  2. Atlas Wearables’ fitness product, Atlas. Their goals is seamless, frictionless experiences. “What if device could recognize specific motions you’re making?” This is really cool: it recognizes and records a wide range of fitness activities, such as push-ups.  I really don’t like fact that my Jawbone can’t do that, so this looks good!

Sony Mobile, Kristian Tarnhed. Challenges:

  1. g data overload. They have a “lifelog” app that tries to make sense of all the data.
  2. too many devices that want your attention. Make them complement smart phone as much as possible.
  3. is it really wearable, usable? 

Very funny: no one mentions Apple. 10-ton gorilla in the room????


Amazing preso by Jim McKeeth: “Is Thought the Future of Wearable Input?”  Guy wearing Google Glass is controlling a drone! Wouldn’t that be an incredible thing for “Smart Aging”  to allow a frail elder to control various household things just by thinking them?


 

Oren Michels, chief strategist, Intel (he was an API pioneer at Mashery):

  • APIs make connections. The Epocrates platform from Athena Health is an example: may save $3.5B.
  • Also working in travel. Example is Sabre, which has switched to an open API.
  • APIs create better customer experiences: Apple Pay! 30% of Starbucks revenue from its phone purchase app.

Quick time to market: Coke was able to restock vending machines instantly during 2012 Olympics through API.

  • Examples:
    • better healthcare monitoring: give small devices processing power through cloud
    • connected car ecosystem (BMW iConnected Services, MyCityWay, TomTom’s WebFleet)
    • Snapshot from Progressive
    • Inrix — “data for planning smart cities”

This, IMHO, is sooo important: open APIs are great example of my Essential Truth of “who else can use this data?” — you don’t have to develop every kewl use for your device yourself: open the API and others will help!


Peter Li, Atlas Wearables (the company that debuted their new device yesterday):

  • iPhone: remember, it was a 3-in-one solution.
  • sensors now commoditized: cheap & tiny
  • he was a biomedical engineer
  • synergistic benefits by combining data streams
  • era of augmentation: making you better without you having to think about it.
  • frictionless actions

“sensors root of the revolution”


Brad Wilkins, Nike science director:

  • he’s exercise physiologist
  • they have whole detailed process to understand physiological phenomena. Role of sensor is the describe the phenomena. Then apply that data to enhance athlete potential

Noble Ackerson, Lynxfit, “Hacking Your Way Through Rehab With Wearables”

  • they let content publishers (they work with Stanford Health, UnderArmour, etc.) in rehab area to push info to devices. Prescribe workouts.  Device agnostic.
  • They’ve imported 65 different activities into program.
  • Track: heart rate, pace, position, speed, endurance, breathing, sentiment.

Panel: Jim Kohlenberger, JK Strategies; Jose Garcia, Samsung; Mark Hanson, BeClose; Alison Remsen, Mobile Future:

  • BeClose is working with seniors!!
  • Samsung working with airports to make flying experience more enjoyable.
  • BeClose: take some of burden off health care system.
  • how government can help: faster networks. “First, do no harm.” — Digital Hypocratic Oath.

DHS (sorry, didn’t get his name):

  • In a crisis,  “data  must inform at the speed of thought” Brilliant
  • To be operational, data must be intuitive, instinctive, interoperable, and wearable.
  • Creating “Next Generation First Responder”
  • Creating fire jackets with sensors built in.

Proximity-aware apps using iBeacon:

  • beacons are Bluetooth v4.0 Low Energy transmitters.
  • mobiles can identify and determine proximity to beacon: usual range is 25 to 40 m, but you can tune it to much shorter range.
  • beacons broadcast unique identifier for the place. Also provide Measured Power Value: what’s signal strength of beacon at specific distance.
  • the beacon only sends out a unique identifier, which triggers the app contains all the info that drives the experience.
  • app is notified whether you’re in immediate range, near, or far range (might even want to present content when person exits the area).
  • beacons protect privacy by being opt-in. They are transmit only: don’t receive or collect signals from mobile devices.
  • Apple requires that the app specifically ask user to allow proximity-aware mobile app to access their location.
  • non iBeacon versions: AltBeacon (Radius Network’s opsolves en source alternative), and other ones that specific companies will introduce, optimized for their products.
  • Radius multi-beacon: solves fragmentation problem or multiple, incompatible beacon ad types. Their RadBeacons handle both types.
  • RadBeacon: USB powered, coin-cell battery powered, AA battery powered.  Most beacons will only last about a month before battery change.
  • Future of beacons: will be split in market: corporate (one of their questions has rolled out more than 16,000 — they won’t powered or long-battery-life versions & remote monitoring) vs. consumers (cheap & disposable). Will be integrated into equipment (wifi access-point hotspots, POS terminals, fuel dispensers, self-service kiosks.

My presentation about “Smart Aging”


 

Privacy & Security Panel:

  • There is real risk of personal data being intercepted. “No perfect solutions.”
  • Data can be stored on smart phone OR uploaded to cloud. What control does user have? What if you have health wearable that sends info on blood pressure, etc., to cloud, where it gets shared with companies, and, for example, it can link data to your Facebook data, could be risk of disclosure.
  • HIPPA and variety of other regulations can come into play.
  • Things moving very quickly, data captured & used. Example of Jawbone data from people who were sleeping during California quake: users upset because the data was disclosed to news media — even though it was just aggregated, was creepy!
  • FTC went after the Android flashlight app that was aggregating data. A no-no.
  • have to make it simple to understand in statements about how your data will be collected & used.
  • Tiles: if the device is gone from home, will send alert to ALL Tile devices. You might be able to modify the software so you (bad guy) could retrieve it it while the owner would think it was still lost.  Stalker might even be able to use this data..

Scott Amyx, Amyx & McKinsey,  “The Internet of Things Will Disrupt Everything”:

  • Example of McLean, the developer of intermodal shipping container. Hmm: does Amyx know about how Freight Farms has created IoT-enhanced food growing in freight containers???
  • future of M2M will allow sensors with embedded processors — smarter than today’s computers.
  • memory: over time, memory will only grow.
  • wifi: most locked networks are idle most of day. Harness them.
  • lifi: 2-way network to turn any light as a network. Higher-speed than wifi.
  • mesh networks (long-time fascination of mine, especially in disasters): every node creates more powerful network. Can’t be controlled by a central gov.
  • Implications:
    • can disrupt telecom (mesh networks)
    • shifting consumer data from cloud to you
  • they’re testing a system that would tell what a person really feels while they’re in store, film companies can test from pilot whether people will really like it. Creepy??
  • working with Element to bring this to fashion show: would gauge reaction.
  • IoT won’t be great leap, but gradual trend (like my argument that companies should begin with IoT by using it to optimize current manufacturing).
  • incredible vision of how you’ll drive to a biz appt. in driverless car, you’ll get briefing on the meeting from your windshield.
  • opportunities at every stage of the IoT development shift.
comments: Comments Off on Live-blogging @ Wearables + Things tags: , ,
http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management