The IoT Can Revolutionize Every Aspect of Small Farming

When the New York Times weighs in on an Internet of Things phenomenon, you know it’s about to achieve mainstream consciousness, and that’s now the case with what I like to call “precision agriculture,” enabled by a combination of IoT sensors in the fields and big data analysis tools.

The combination is potent and vital because an adequate supply of safe food is so central to our lives, and meeting that need worldwide depends increasingly on small farms, which face a variety of obstacles that big agribusinesses don’t encounter.

Chris Rezendes, a partner in INEX Advisors, who’s been particularly active with IoT-based ag startups, pointed out to me in a private communication that the problem is world-wide, and particularly matched to the IoT’s capabilities, because food security is such a ubiquitous problem and because (surprisingly to me) the agricultural industry is dominated more by small farms, not agri-biz:

“… most people do not have an understanding of the dimensions of food security beyond calories. Feeding the world demands more than just calories. It demands higher nutritional quotient, safety, affordability and accessibility.

“And all that translates in many models into a need for a more productive, profitable and sustainable small ag industry.

“Most folks do not realize that that there are nearly 700 million farmers on the planet. In the US alone, we have 2.3 million ag operations (and, BTW, the number of millennials entering the field is nearly doubling each year) — and that is not counting processing, packaging, distribution, or anything related to fisheries. Most of those farms are pretty small … less than 500 acres on average, and when you strip out the conglomerates and the hobbyist farmers, you are left with hundreds of thousands of small businesses averaging nearly $4 million per year in revenue.”

As reported by The Times‘ Steve Lohr, Lance Donny, founder of ag technology start-up, OnFarm Systems, said the IoT’s benefits can be even greater outside the US:

“.. the most intriguing use of the technology may well be outside the United States. By 2050, the global population is projected to reach nine billion, up from 7.3 billion today. Large numbers of people entering the middle class, especially in China and India, and adopting middle-class eating habits — like consuming more meat, which requires more grain — only adds to the burden.

“To close the food gap, worldwide farm productivity will have to increase from 1.5 tons of grain per acre to 2.5 tons by 2050, according to Mr. Donny. American farm productivity is already above that level, at 2.75 tons of grain per acre.

“’But you can’t take the U.S. model and transport it to the world,’ Mr. Donny said, noting that American farming is both highly capital-intensive and large scale. The average farm size in the United States is 450 acres. In Africa, the average is about two acres.

“’The rest of the world has to get the productivity gains with data,’ he said.”

The marketplace and entrepreneurs are responding to the challenge. The Times piece also reported that IoT-enabled ag is now big business, with a recent study by AgFunder (equity crowdfunding for ag tech!) reporting start-ups have snared $2.06 billion in 228 deals so far this year (compared to $2.36 billion in all of 2014, which was itself a record).  When you add in the big funding that companies such as Deere have done in IoT over the last few years (in case you didn’t know it, this 178-year old company has revolutionized its operations with the IoT, creating new revenue streams and services in the process) and the cool stuff that’s even being produced here in Boston, and you’ve got a definite revolution in the most ancient of industries.

Rezendes zeros in on the small farmers’ need for data in order to improve every aspect of their operations, not just yields, and their desire to control their data themselves, rather than having it owned by some large, remote conglomerates. Most of all, he says, they desperately needed to improve their profitability, which is difficult with smaller farms:

“Those 2.3 million farmers will deploy IoT in their operations when they know that the data is relevant, actionable, profitable, secure and theirs.

“They are not going to deploy third-party solutions that capture farmers’ operational intelligence, claim ownership of it, and leverage the farmers’ livelihood for the solution vendors’ strategic goals.

“For example, we went into a series of explorations with one ag co-op in the East this spring, after going into the exploration thinking that we might be able to source a number of productivity enhancement solutions for vegetable growers and small protein program managers. We were wrong.

“These farmers in this one part of a New England state had been enjoying years of strong, if uneven growth in their output. That was not their challenge: their challenge was with profitability.”

Think of small farms near you, which must be incredibly nimble to market their products (after toiling in the fields!) relying heavily on a mix of CSAs, local restaurants that feature locally-sourced foods, and on farmers’ markets. Rezendes says the small farmers face a variety of obstacles because of their need (given their higher costs) to attract customers who would pay prevailing or (hopefully) premium prices, while they face perceptual problems because small farmers must be jacks-of-all-trades:

“They have only one ‘route.’ They market, sell, and deliver in the same ‘call,’ so their stops are often longer than your typical wholesale food routes. They also have only one marketing, sales and delivery team – and that is often the same team that is tilling, planting, watering, weeding, harvesting and repairing, so they often show up on accounts wearing clothes, driving vehicles, and carrying their inventory in containers that aren’t in any manual for slick brand development manual!

“To complicate things, many of their potential customers could not accept the shipment for insurance purposes, because the farmers didn’t have labels that change with exposure to extreme temperature, sunlight or moisture, or digital temperature recorders.”

Who would think that the IoT might provide a work-around for the perceptual barriers and underscore local farms’ great advantage, the quality of the product?  The farmers suggested to the INEX team once they understood the basics of IoT technology that:

“if we could source a low-cost traceability solution that they could attach to their reusable transport items, they thought they could use that data for branding within the co-op and the regional market. This would reduce the time needed to market and sell, document and file.  The farmers also told us that if the solution was done right, it might serve their regulatory, permitting and licensing requirements, even across state lines.”

Bottom line: not only can sensors in the field improve yields and cut costs for fertilizing and water use through precision, but other sensors can also work after the food is harvested, providing intelligence that lets producers prove their safety, enhance their sales productivity, and drive profit that enables re-investment.

What a great example of the IoT at work, and how, when you start to think in terms of the IoT’s “Essential Truths,” it can revolutionize every aspect of your company, whether a 50-acre farm or a global manufacturer!  

comments: Comments Off on The IoT Can Revolutionize Every Aspect of Small Farming tags: , , , , ,

LOL: The Boston Olympics that Will Not Be: How the IoT MIGHT Have Pulled It Off!

Well, there go the billions my wife and I were going to make from renting our house through Airbnb for the Boston 2024 Olympics….   The US Olympic Committee pulled their support for the bid several hours ago based on the lack of public support for the proposal, which comes as NO surprise to those of us who know and (sometimes) love the local sport of choice in Boston: not the modern pentathalon, but debating any issue ad nauseum and eating our own.

Oh well!  I’d been planning a special meeting of our Boston IoT MeetUp for September about how the IoT really might make it possible that we could both build the Olympic infrastructure on time and on budget through creative use of the IoT AND also build a positive legacy that would endure after the games were over.

I’d also just written an op-ed on the subject. Since the chances of getting one of the local rags to publish that now are also zero, I thought I’d post it here, in hopes that it may inspire the other cities still bidding for the Games to adopt this approach, and that Boston and Massachusetts will also make the IoT a critical part of any major construction projects and smart city strategies.


 

What if a single approach could meet both of Boston 2024’s main challenges: building the venues on-time and under budget, AND assuring a positive legacy for the city, region and state?

There is: the Internet of Things (IoT), the concept of linking not just people, but also devices, via the Internet so they can be coordinated and activated automatically and in real time.  The IoT is already a reality, as demonstrated by examples ranging from “smart” thermostats you can adjust from your smartphone to fitness devices that let you track your vital signs.

While most are still unaware of the IoT, Boston was recently ranked as the world’s fourth-leading city in terms of numbers of IoT companies, and the Boston IoT MeetUp that I co-chair has grown to 1400 members in less than two years.

Every Olympics faces serious questions because of the history of cost overruns and construction delays, but our bid faces the extra burden of the botched Big Dig.

Construction sites are inherently chaotic because of so much equipment and so many subcontractors, resulting in an astounding 70-80% idle time, but the IoT changes that.  My client, SAP, and SK Solutions have collaborated in Dubai (which is on a construction binge dwarfing anything the Olympics might bring), putting sensors on all of the construction equipment, trucks, etc., so that the managers can visualize, in real-time, who is where, and make sure the right ones are in place and ready to go exactly when needed. Everyone who needs it, from operators to maintenance, shares the same data at the same time, building collaboration and efficiency.

The IoT can also make the games run smoothly and efficiently. After last Winter, we know how poorly the MBTA operates currently. The IoT can dramatically improve operations because sensors will report real-time data about the condition of every piece of rolling stock, so issues can be dealt with quickly and cheaply ( “predictive maintenance”) before they become critical. Ports and airports, such as Logan, are also inherently chaotic, but the Port of Hamburg has increased its operating efficiency through IoT coordination of every vehicle.  Clever IoT transportation projects already underway by the Mayor’s Office of the New Urban Mechanics can also help the games operate efficiently.

Believe it or not, even the most prosaic parts of our urban landscape can and must be reinvented to make the games run smoothly.  You’ve already seen the ultra-modern Big Belly Solar trash compactors (from Needham) that now dot downtown, which compact trash and collect recycling to make our streets cleaner. But did you know that each of them also houses a wireless system that creates a free “mesh network” that gives us free wi-fi access on the streets as well (and, in a post-Olympics disaster, could provide real-time response information)? Why not deploy them region-wide? Or, why have conventional streetlights when there are ones that not only cut electric use with LED bulbs, but also have banner-like LED panels that could have constantly-changing panels about that day’s events and would switch instantly to showing real-time detours because of data about traffic jams just ahead?

The Olympics will also stress our electricity infrastructure, and the IoT can help there as well. Two-way real-time data flow will allow a electric “smart grid” to dispatch power exactly when, where, and in the amount needed. What if we also had the world’s best network of neighborhood electric car chargers, and if Zip Car, one of our home-bred IoT innovations, became the preferred way of getting around not just downtown, but also the whole region?

A smart grid and efficient, reliable mass transit wouldn’t be the only positive legacy from the IoT.  If the Olympic Village to house the athletes was made up of “smart buildings” with built-in sensors, after the Olympics they would become economical, user-friendly and affordable apartments.

You may not have heard much about the Internet of Things so far, but the technology is already here, and the cost is plummeting.  Major orders for sensors, operating software and other components for the Olympics would create more jobs in our local IoT industry and further drive down the IoT’s cost.

Experts agree that the IoT will bring about as radical a transformation in our lives and economy as the Internet did, and making it the centerpiece of Boston’s Olympics construction, operations and legacy planning could make us again the Hub of the (Internet of Things) Universe.


 

Oh well!

comments: Comments Off on LOL: The Boston Olympics that Will Not Be: How the IoT MIGHT Have Pulled It Off! tags: , , , ,

The IoT Can Improve Safety and Profitability of Inherently Dangerous Job Sites

You may remember I wrote several months ago about a collaboration between SAP and SK Solutions in Dubai (interesting factoid: Dubai is home to almost 25% of the world’s cranes [assume most of the rest nest at Sand Hill, LOL], and they are increasingly huge, and that makes them difficult to choreograph.

I’m returning to the subject today, with a slightly broader emphasis on how the IoT might manage a range of dangerous job sites, such as mining and off-shore oil rigs, allowing us to do now that we couldn’t do before, one of my IoT Essential Truths.

I’m driven in part by home-town preoccupation with Boston’s bid for the 2024 Olympics, and the inevitable questions that raises on the part of those still smarting from our totally-botched handling of the last big construction project in these parts, the infamous “Big Dig” tunnel and highway project.

I’m one of those incurable optimists who think that part of ensuring that the Olympics would have a positive “legacy” (another big pre-occupation in these parts) would be to transform the city and state into the leading example of large-scale Internet of Things implementation.

There are a couple of lessons from SAP and SK Solutions’ collaboration in Dubai that would be relevant here:

    • The system is real-time: the only way the Boston Olympic sites could be finished in time would be through maximizing efficiency every day. Think how hard that is with a major construction project: as with “for want of a nail the kingdom was lost,” the sensitive interdependence between every truck and subcontractor on the site — many of which might be too small to invest in automation themselves — is critical. If information about one sub being late isn’t shared, in real-time, with all the other players, the delays — and potential collisions — will only pile up. The system includes an auto-pilot that makes immediate adjustments to eliminate operator errors. By contrast, historical data that’s only analyzed after the fact won’t be helpful, because there’s no do-overs, no 2025 Olympics!
    • The data is shared: that’s another key IoT Essential Truth.  “Decision-makers using SK Solutions on a daily basis span the entire organization. Besides health and safety officers, people responsible for logistics, human resources, operations and maintenance are among the typical users.”  The more former information silos share the data, the more likely they are to find synergistic solutions.
    • The system is inclusive, both in terms of data collection and benefits: SK Solutions’ Founder and Inventor Séverin Kezeu, came up with his collision-avoidance software pre-IoT, but when the IoT became practical he partnered with SAP, Cisco, and Honeywell to integrate and slice and dice the data yielded by the sensors they installed on cranes and vehicles and other sources.  For example, the height of these cranes makes them vulnerable to sudden weather changes, so weather data such as wind speed and direction must be factored in, as well as the “machinery’s position, movement, weight, and inertia…. The information is delivered on dashboards and mobile devices, visualized with live 3-D images with customizable views. It’s also incredibly precise.”As a result, by using SAP’s HANA platform, a system developed to reduce construction accidents also makes predictive maintenance of the cranes and other equipment, and lets the construction companies monitor Key Performance Indicators (KPIs) such as asset saturation, usage rates, and collisions avoided.  McKinsey reports that construction site efficiency could improve dramatically due to better coordination: “One study found that buffers built into construction project schedules allowed for unexpected delays resulting in 70 to 80 percent idle time at the worksite.Visibility alone can allow for shorter buffers to be built into the construction process.”

Several other great IoT solutions come to mind at the same time, both relating to dangerous industries. Off-shore oil rigs and mining were treated at length in the recent McKinsey omnibus IoT forecast, “The Internet of Things: Mapping the Value Beyond the Hype:”

  • off-shore rigs: “Much of the data collected by these sensors [30,000 on some rigs] today is used to monitor discrete machines or systems. Individual equipment manufacturers collect performance data from their own machines and the data can be used to schedule maintenance. Interoperability would significantly improve performance by combining sensor data from different machines and systems to provide decision makers with an integrated view of performance across an entire factory or oil rig. Our research shows that more than half of the potential issues that can be identified by predictive analysis in such environments require data from multiple IoT systems. Oil and gas experts interviewed for this research estimate that interoperability could improve the effectiveness of equipment maintenance in their industry by 100 to 200 percent.” (my emphasis). 
  • mining: “In one mining case study, using automated equipment in an underground mine increased productivity by 25 percent. A breakdown of underground mining activity indicates that teleremote hauling can increase active production time in mines by as much as nine hours every day by eliminating the need for shift changes of car operators and reducing the downtime for the blasting process. Another source of operating efficiency is the use of real-time data to manage IoT systems across different worksites, an example of the need for interoperability. In the most advanced implementations, dashboards optimized for smartphones are used to present output from sophisticated algorithms that perform complex, real-time optimizations. In one case study from the Canadian tar sands, advanced analytics raised daily production by 5 to 8 percent, by allowing managers to schedule and allocate staff and equipment more effectively. In another example, when Rio Tinto’s (one mine) crews are preparing a new site for blasting, they are collecting information on the geological formation where they are working. Operations managers can provide blasting crews with detailed information to calibrate their use of explosives better, allowing them to adjust for the characteristics of the ore in different parts of the pit.”
 In all of these cases, the safety and productivity problems — and solutions are intertwined.  As McKinsey puts it:
“Downtime, whether from repairs, breakdowns, or maintenance, can keep machinery out of use 40 percent of the time or more. The unique requirements of each job make it difficult to streamline work with simple, repeatable steps, which is how processes are optimized in other industries. Finally, worksite operations involve complex supply chains, which in mining and oil and gas often extend to remote and harsh locations.”
Could it be that the IoT will finally tame these most extreme work situations, and bring order, safety, and increased profitability?  I’m betting on it.
comments: Comments Off on The IoT Can Improve Safety and Profitability of Inherently Dangerous Job Sites tags: , , , , , ,

Eureka! MYLE TAP: Nice Example of IoT Letting You Do Something You Couldn’t

I like to occasionally feature products that aren’t earth-shaking in their own right (such as the cameleon shoes that can change their appearance with the swipe of an app) , but nicely illustrate one of my IoT acid tests: what can you do that you couldn’t do before?

I love those, because they can get our creative juices boiling to think of other unprecedented IoT devices.

The MYLE TAP Thought Recorder

Here’s a nice example that I suspect may itself facilitate a lot of “Archimedes Moments” (just coined that one, LOL), where IoT users will leap from their baths and run nude through the streets, shrieking “Eureka,” because of their sudden insights into some great new IoT device (actually not sure of that image.  Are IoT enthusiasts slim and attractive?),

One little factoid really makes this one come alive: “the average person generates over 70,000 thoughts a day.” Now that’s a staggering unstructured data challenge!

Might be of particular interest, Dear Readers, to those of us on the far side of 50 who have a ton of great ideas but, how shall we say this delicately, don’t always remember them 15 minutes later).

At any rate, the crowd-funded ($83,707 raised so far, by 755 people in 15 days, compared to a $50,000 goal. As of this writing the campaign goes for 16 more days, so you can still get in on the ground-floor.) MYLE TAP will allow users to effortlessly record their thoughts in real-time (which, BTW, is a crucial element in how the IoT really transforms everything: instead of limited data, obtained retroactively, we can get limitless data now, when we can still act on it).

To activate the attractive device you simply tap it.  It understands 42 languages right out of the box!

There are some really neat components of the device that could really make your life a lot simpler because you can speak what you want to record (I don’t know about you, but the more I learn about the powers of Siri and her friends, the more I think voice-interface is really the way to go in the future, especially for tech-averse seniors, the targets of my Smart Aging concept). As the site says, “your saved notes are analyzed by context to generate you meaningful results via smartphone applications.” Here are the first uses:

  • Calorie Counter: “’I had one Caesar salad and one big apple.’ MYLE calculates how many calories you have consumed.”
  • Budget & Spending: “’Spent $7 on coffee and $40 on gas’, and MYLE enters it into your personal and business expense tracker.”  IMHO, this could be a REAL value!
  • Grocery List: “Tell MYLE ‘buy eggs, milk, flour,’ Your shopping list is built automatically.”
  • Calendar: “Tell MYLE ‘Pick Sophia up from school at four,’ and a new item is added to your calendar.”
  • Social Media: “Share your memorable event or experience. One tap can post can post it on your Facebook or Twitter account.”
  • Exercise: “Excercise with your MYLE TAP. Build and keep records of your progress.”

I can already do a lot of these things with my iPhone and Apple Watch, and perhaps the Watch will eventually do all these things once developers have created new apps, but I like the idea of a single, snazzy-looking device that can do all of them. And, smart people that they are, the MYLE developers have developed an open SDK and API. Once the IFTTT community gets hold of it, they’ll come up with ideas to extend the device’s utility that the MYLE folks never would have conceived of!

The MYLE TAP — doing something that we couldn’t do before!


 

Here are the technical details, courtesy of Atmel:

“Based on an Atmel | SMART SAM4S MCU, the super compact and lightweight gadget is equipped with an accelerometer, a Bluetooth Low Energy module, a few LEDs and a built-in battery capable of running up to a week on a single charge. MYLE TAP boasts some impressive memory as well, with a storage capacity of up to 2,000 voice notes.”

 

comments: Comments Off on Eureka! MYLE TAP: Nice Example of IoT Letting You Do Something You Couldn’t tags: , , , , ,

McKinsey IoT Report Nails It: Interoperability is Key!

I’ll be posting on various aspects of McKinsey’s new “The Internet of Things: Mapping the Value Beyond the Hype” report for quite some time.

First of all, it’s big: 148 pages in the online edition, making it the longest IoT analysis I’ve seen! Second, it’s exhaustive and insightful. Third, as with several other IoT landmarks, such as Google’s purchase of Nest and GE’s divestiture of its non-industrial internet division, the fact that a leading consulting firm would put such an emphasis on the IoT has tremendous symbolic importance.

McKinsey report — The IoT: Mapping the Value Beyond the Hype

My favorite finding:

“Interoperability is critical to maximizing the value of the Internet of Things. On average, 40 percent of the total value that can be unlocked requires different IoT systems to work together. Without these benefits, the maximum value of the applications we size would be only about $7 trillion per year in 2025, rather than $11.1 trillion.” (my emphasis)

This goes along with my most basic IoT Essential Truth, “share data.”  I’ve been preaching this mantra since my 2011 book, Data Dynamite (which, if I may toot my own horn, I believe remains the only book to focus on the sweeping benefits of a paradigm shift from hoarding data to sharing it).

I was excited to see that the specific example they zeroed in on was offshore oil rigs, which I focused on in my op-ed on “real-time regulations,” because sharing the data from the rig’s sensors could both boost operating efficiency and reduce the chance of catastrophic failure. The paper points out that there can be 30,000 sensors on an rig, but most of them function in isolation, to monitor a single machine or system:

“Interoperability would significantly improve performance by combining sensor data from different machines and systems to provide decision makers with an integrated view of performance across an entire factory or oil rig. Our research shows that more than half of the potential issues that can be identified by predictive analysis in such environments require data from multiple IoT systems. Oil and gas experts interviewed for this research estimate that interoperability could improve the effectiveness of equipment maintenance in their industry by 100 to 200 percent.”

Yet, the researchers found that only about 1% of the rig data was being used, because it rarely was shared off the rig with other in the company and its ecosystem!

The section on interoperability goes on to talk about the benefits — and challenges — of linking sensor systems in examples such as urban traffic regulation, that could link not only data from stationary sensors and cameras, but also thousands of real-time feeds from individual cars and trucks, parking meters — and even non-traffic data that could have a huge impact on performance, such as weather forecasts.  

While more work needs to be done on the technical side to increase the ease of interoperability, either through the growing number of interface standards or middleware, it seems to me that a shift in management mindset is as critical as sensor and analysis technology to take advantage of this huge increase in data:

“A critical challenge is to use the flood of big data generated by IoT devices for prediction and optimization. Where IoT data are being used, they are often used only for anomaly detection or real-time control, rather than for optimization or prediction, which we know from our study of big data is where much additional value can be derived. For example, in manufacturing, an increasing number of machines are ‘wired,’ but this instrumentation is used primarily to control the tools or to send alarms when it detects something out of tolerance. The data from these tools are often not analyzed (or even collected in a place where they could be analyzed), even though the data could be used to optimize processes and head off disruptions.”

I urge you to download the whole report. I’ll blog more about it in coming weeks.

comments: Comments Off on McKinsey IoT Report Nails It: Interoperability is Key! tags: , , , , , , ,

Intel’s IoT tech improves its own manufacturing efficiency

This demonstration IoT manufacturing project hits my buttons!

I love IoT-enabled manufacturing (what I call “precision manufacturing“) and I REALLY love companies (such as GE, at its Durathon battery plant) that eat their own dogfood by applying their IoT technology internally.  Gotta walk the talk!

 

That’s why I was happy to learn how Intel is  applied its own IoT technology to its own factories. In the accompanying video, Intel VP for IoT operations and group marketing Frank James says:

“The real opportunity is how to combine … data differently, which will ultimately give you insights not only into how your factory is running but, what’s more important, will let you predict how your factory will run the next minute, the next hour, the next shift, the next day.”

The pilot factory automation project is a collaboration with Mitsubishi Electric (more points for a key IoT “Essential Truth” — collaboration!).  The project, at Intel’s Malaysia manufacturing facility, combines two critical components, end-to-end IoT connectivity and big data analytics. The benefits were impressive: $9 million in cost avoidance and improved decision making, plus:

  • improved equipment uptime
  • increased yield and productivity
  • predictive maintenance
  • reduced component failures.

That hard-to-quantify improved decision making, BTW, is one of the things that doesn’t get enough discussion when we talk about IoT benefits: decision-making improves when there is more data to consider, more people to analyze and discuss it simultaneously (not sequentially, as in the past), and when you’ve got tools such as data dashboards to allow visualizing the data and its patterns.

The companies plan to roll out the services commercially this year.

Here are the specs:

“Using an Intel® Atom™ processor-based IoT gateway called the C Controller from Mitsubishi Electric’s iQ-Platform, Intel was able to securely gather and aggregate data for the analytics server. Data was then processed using Revolution R Enterprise* software from Revolution Analytics*, an analytics software solution that uses the open source R statistics language, which was hosted on Cloudera Enterprise*, the foundation of an enterprise data hub.”

 

comments: Comments Off on Intel’s IoT tech improves its own manufacturing efficiency tags: , , , ,

Virtual Sensor Networks: a key #IoT tool?

I was once again honored to be a guest on Coffee Break With Game Changers Radio today with David Jonker and Ira Berk of SAP — it’s always a delight to have a dialogue on the Internet of Things with these two brainy guys (and hats off as well to moderator/host Bonnie Graham!).

Toward the end of the show, Ira brought up a concept that was new to me: virtual sensor networks.

I’ve got sensors on the brain right now, because I’m frankly worried that sensors that don’t have adequate baked-in security and privacy protections and which can’t be ungraded as new opportunities and threats present themselves may be a threat to the IoT because they typically remain in use for so many years. Ah, but that’s a topic for another post.

According to Wikipedia, Virtual sensor networks are an:

“… emerging form of collaborative wireless sensor networks. In contrast to early wireless sensor networks that were dedicated to a specific application (e.g., target tracking), VSNs enable multi-purpose, collaborative, and resource efficient WSNs. The key idea difference of VSNs is the collaboration and resource sharing….
“… A VSN can be formed by providing logical connectivity among collaborative sensors. Nodes can be grouped into different VSNs based on the phenomenon they track (e.g., rock slides vs. animal crossing) or the task they perform. VSNs are expected to provide the protocol support for formation, usage, adaptation, and maintenance of subset of sensors collaborating on a specific task(s). Even the nodes that do not sense the particular event/phenomenon could be part of a VSN as far as they are willing to allow sensing nodes to communicate through them. Thus, VSNs make use of intermediate nodes, networks, or other VSNs to efficiently deliver messages across members of a VSN.”

Makes sense to me: collaboration is a critical basic component of the human aspect of the IoT (one of my IoT “Essential Truths), so why shouldn’t that extend to the mechanics as well?). If you have a variety of sensors already deployed in a given area, why should you have to deploy a whole new set of single-purpose ones to monitor a different condition if data could be synthesized from the existing sensors to effectively yield the same needed information?

2008 article on the concept said the virtual sensor networks are particularly relevant to three categories where data is* needed:

“Firstly, VSNs are useful in geographically overlapped applications, e.g., monitoring rockslides and animal crossing within a mountainous terrain. Different types of devices that detect these phenomena can relay each other for data transfer without having to deploy separate networks (Fig. 1). Secondly, VSNs are useful in logically separating multipurpose sensor networks, e.g., smart neighborhood systems with multifunctional sensor nodes. Thirdly, VSNs can be used to enhance efficiency of systems that track dynamic phenomena such as subsurface chemical plumes that migrate, split, or merge. Such networks may involve dynamically varying subsets of sensors.”

That article went on to propose a flexible, self-organizing “cluster-tree” approach to create the VSN, using tracking of a pollution plume as an example:

“…  a subset of nodes organizes themselves to form a VSN to track a specific plume. Whenever a node detects a relevant event for the first time it sends a message towards the root of the cluster tree indicating that it is aware of the phenomenon and wants to collaborate with similar nodes. The node may join an existing VSN or makes it possible for other nodes that wish to form a VSN, to find it. Use of a cluster tree or a similar structure guarantees that two or more nodes observing the same phenomenon will discover each other. Simulation based results show that our approach is more efficient and reliable than Rumor Routing and is able to combine all the nodes that collaborate on a specific task into a VSN.”

I suspect the virtual sensor network concept will become particularly widespread as part of “smart city” deployments: cash-strapped municipalities will want to get as much bang for the buck possible from already-deployed sensors, without having to install new ones. Bet my friends in Spain at Libellium will be in the forefront of this movement!

Thanks, Ira!


*BTW: if any members of the Grammar Police are lurking out there (I’m a retired lt. colonel of the Mass. State Grammar Police myself), you may take umbrage at “data is.”  Strictly speaking, the proper usage in the past has been “data are,” but the alternative is becoming so widespread that it’s becoming acceptable usage. So sue me…

 

comments: Comments Off on Virtual Sensor Networks: a key #IoT tool? tags: , , , ,

Apple & IBM partnership in Japan to serve seniors a major step toward “Smart Aging”

As Bob Seger and I prepare to turn 70 (alas, no typo) on Wednesday (as long as he’s still singing “Against the Wind” I know I’m still rockin’) my thoughts turn to my “Smart Aging” paradigm, which combines Quantified Self devices that can change our relationships with doctors into a partnership and give us encouragement to do more fitness activities and smart home devices that make it easier for seniors to run their homes and avoid institutionalization.

That’s why I was delighted to read this week about Apple (obligatory disclaimer: I work part-time at The Apple Store, especially with “those of a certain age,” but am not privy to any of their strategy, and my opinions are solely my own) and IBM teaming with Japan Post (hmm: that’s one postal service that seems to think creatively. Suspect that if one B. Franklin still ran ours, as he did in colonial days, we’d be more creative as well…) to provide iPads to Japan’s seniors as part of Japan Post’s “integrated lifestyle support group” (the agency will actually go public later this year, and the health services will be a key part of its services).

Apple and IBM announced, as part of their “enterprise mobility” partnership that will also increase iPads’ adoption by businesses, that they will provide 5 million iPads with senior-friendly apps to Japanese seniors by 2020.  IBM’s role will be to develop app analytics and cloud services and “apps that IBM built specifically for elderly people .. for medication adherence … exercise and diet, and … that provide users with access to community activities and supporting services, including grocery shopping and job matching.”

The overall goal is to use the iPads and apps to connect seniors with healthcare services and their families.  I can imagine that FaceTime and the iPads’ accessibility options will play a critical role, and that current apps such as Lumosity that help us geezers stay mentally sharp will also be a model.

According to Mobile Health News, the partnership will offer some pretty robust services from the get-go:

“If seniors or their caregivers choose, they can take advantage of one of Japan Post Groups’ post office services, called Watch Over where, for a fee, the mail carriers will check in on elderly customers and then provide the elderly person’s family with an update. 

“In the second half of this year, customers can upgrade the service to include iPad monitoring as well.After Japan Post Group pilots the iPads and software with 1,000 seniors for six months, the company will expand the service in stages.”

Lest we forget, Japan is THE harbinger of what lies ahead for all nations as their populations age. 20% of the population was already over 65 in 2006,  38% will be in 2055.  As I’ve said before in speeches, the current status quo in aging is simply unsustainable: we must find ways for seniors to remain healthy and cut the governmental costs of caring for them as they grow as a percentage of the population.  As Japan Post CEO Taizo Nishimuro (who looks as if he’s a candidate for the new services — y0u go, guy!) said, the issue is “most acute in Japan — we need real solutions.”

IBM CEO Ginni Rometty said her company will take on a 3-part mission:

“First, they’ll be working on ‘quality of life apps,’ both by building some themselves and by integrating others, all of which will be aimed at accessibility first. The key target will be iOS, since it’s a mobile-first strategy in keeping with our changed computing habits. Second, they’re working on developing additional accessibility features not yet available, and third they’re helping Japan Post with the service layer required to deliver this to the elderly.”

Sweet! — and it reminds me of the other recently announced IBM/Apple announcement, in that case with J & J, to build a robust support structure for Apple’s new open-source ResearchKit and HealthKit platform to democratize medical research.  The IoT ain’t nothin’ without collaboration, after all.

Cook, according to TechCrunch, put the initiative in a global context (not unlike his environmental initiatives, where, IMHO, he’s become THE leading corporate change agent regarding global warming):

“Tim Cook called the initiative ‘groundbreaking,’ saying that it is ‘not only important for Japan, but [also] has global implications. Together, the three of us and all the teams that work so diligently behind us will dramatically improve the lives of millions of people.’

“…. The Apple CEO talked about how the company aims to ‘help people that are marginalized in some way, and empower them to do the things everyone else can do.” He cited a UC Irvine study which details how remote monitoring and connection with loved ones via iPad help instill a sense of confidence and independence in seniors. He added that he believes what the companies are doing in Japan is also scalable around the world.”

It will be interesting to see exactly how the partnership addresses the challenge of creating those senior-friendly “quality of life” apps: as someone who’s on the front-lines of explaining even Apple’s intuitive devices to older customers, I can tell you that many seniors begin are really frightened by these technologies, and it will take a combination of great apps and calm, patient hand-holding to put them at ease.

As I enter my 7th decade, I’m pumped!

comments: Comments Off on Apple & IBM partnership in Japan to serve seniors a major step toward “Smart Aging” tags: , , , , , , , , , ,

GE & IBM make it official: IoT is here & now & you ignore it at your own risk!

Pardon my absence while doing the annual IRS dance.

While I was preoccupied, GE and IBM put the last nail in the coffin of those who are waiting to launch IoT initiatives and revise their strategy until the Internet of Things is more ….. (supply your favorite dismissive wishy-washy adjective here).

It’s official: the IoT is here, substantive, and profitable.

Deal with it.

To wit:

The two blue-chips’ moves were decisive and unambiguous. If you aren’t following suit, you’re in trouble.

The companies accompanied these bold strategic moves with targeted ones that illustrate how they plan to transform their companies and services based on the IoT and related technologies such as 3-D printing and Big Data:

  • GE, which has become a leader in 3-D printing, announced its first FAA-approved 3-D jet engine part, housing a jet’s compressor inlet temperature sensor. Sensors and 3-D printing: a killer combination.
  • IBM, commercializing its gee-whiz Watson big data processing system, launched Watson Health in conjunction with Apple and Johnson & Johnson, calling it “our moonshot” in health care, hoping to transform the industry.  Chair Ginny Rometty said that:

“The Watson Health Cloud platform will ‘enable secure access to individualized insights and a more complete picture of the many factors that can affect people’s health,’ IBM says each person generates one million gigabytes of health-related data across his or her lifetime, the equivalent of more than 300 million books.”

There can no longer be any doubt that the Internet of Things is a here-and-now reality. What is your company doing to catch up to the leaders and share in the benefits?

 

comments: Comments Off on GE & IBM make it official: IoT is here & now & you ignore it at your own risk! tags: , , , , , , , , ,

Deloitte’s IoT “Information Value Loop”: critical attitudinal shift

Ever so often it’s good to step back from the day-to-day minutia of current Internet of Things projects, and get some perspective on the long-term prospects and challenges.

That’s what Deloitte did last December, when it held an “Internet of Things Grand Challenge Workshop,” with a focus on the all-important “forging the path to revenue generation.”

The attendees included two of my idols: John Seely Brown and John Hagel, of Deloitte’s “Center for the Edge” (love the pun in that title!).

The results were recently released, and bear close examination, especially the concept of how to foster what they call the “Information Value Loop”:

Deloitte IoT Information Value Loop

Deloitte IoT Information Value Loop

“The underlying asset that the IoT creates and exploits is information, yet we lack a well- developed, practical guide to understand how information creates value and how companies can effectively capture value. The ‘Information Value Loop’ describes how information creates value, how to increase that value, and how understanding the relevant technology is central to positioning an organization to capture value. The Information Value Loop is one way to begin making sense of the changes we face. The Loop consists of three interconnected elements: stages, value drivers, and technologies. Where the stages and value drivers are general principles defining if and how information creates value under any circumstances, it is the specifics of today’s technology that connect the Loop to the challenges and opportunities created by the IoT.”

This fits nicely with one of my IoT Esssential Truths,” that we need to turn linear information flows into cyclical ones to fully capitalize on the IoT.  No pussy-footin’ about this for these guys: “For information to create any value at all, it must pass through all the stages of the Loop. This is a binary outcome: should the flow of information be blocked completely at any stage, no value is created by that information.”

IMHO, this is also going to be one of the biggest challenges of the IoT for management: in the days when it was sooo difficult to gather and disseminate information, it made sense for those in the C-suite to control it, and parcel out what they felt was relevant, to whom and when they felt it was relevant. More often than not, the flow was linear and hierarchical, with one information silo in the company handing on the results to the next after they’d processed it. That didn’t allow any of the critical advantages the IoT brings, of allowing everyone who needs it to share real-time data instantly.  But saying we need to change those information management practices is one thing: actually having senior management give up their gatekeeper functions is another, and shouldn’t be understated as a challenge.

So here are some of the other key points in the conference proceedings:

  • In line with the multi-step strategy I outlined in Managing the Internet of Things Revolution, they concluded that incremental improvements to existing processes and products are important, but will only take you so far, at which point radical innovation will be crucial: “At first blush, the early IoT emphasis on sustaining innovation seems reasonable. Performance and cost improvement are seldom absent from the priorities of stakeholders; they are relatively easy to measure and their impact is likely more immediate than any investment that is truly disruptive. Put simply, the business case for an IoT application that focuses on operational efficiencies is relatively easy to make. Many decision makers are hard-wired to prefer the path of less resistance and, for many, truly innovative IoT applications seem too far-flung and abstract to risk pursuing. Still, organizations cannot innovate from the cost side forever.”
  • Melding the public and private, “Cities have inherent societal challenges in place to serve as natural incubators of IoT solutions.” Yeah!
  • As in everything else, those contrarian Millennials (who aren’t so hung up on buying stuff and often prefer to just use it)  are likely to save us when it comes to the IoT:  “From an innovation perspective … some of the new technologies are first marketed at the consumers. Thus, many believe that near-term innovation in IoT applications will come out of the consumer sector – spurred by the emergence of the tech-savvy Millennial consumers as a driving economic force.”
  • As I’ve written before, while some customers will still prefer to buy products outright, the IoT will probably bring a shift from selling products to marketing services based on those products, creating new revenue streams and long-term relationships with customers: “As IoT makes successful forays into the world of consumer and industrial products, it may radically change the producer—buyer transactional model from one based on capital expenditure to one based on operating expenditure. Specifically, in a widely adopted IoT world, buyers may be more apt to purchase product service outcomes on some kind of “per unit” basis, rather than the product itself and in so doing, render the physical product as something more of an afterthought. The manufacturer would then gradually transform into a service provider, operating on a complete awareness of each product’s need for replenishment, repair, replacement, etc.”

    Or, a hybrid model may emerge: “What may ultimately happen in a relatively connected product world is that many may accept the notion of the smartly connected product, but in a limited way. Such people will want to own the smartly connected product outright, but will also accept the idea of sharing the usage data to the limited extent that the sellers use such data in relatively benign ways, such as providing advice on more efficient usage, etc. The outcome here will also rely upon a long term total cost of ownership (TCO) perspective. With any fundamental purchasing model changes (as is taking place in owned vs. cloud resources in the network / IT world), not all suppliers will be able to reap additional economic benefit under the service model. Buyers will eventually recognize the increase in TCO and revert back to the more economical business model if the economic rents are too high.”

  • It’s likely that those players in the IoT ecosystem who create value-added data interpretation will be the most valuable and profitable: “…are certain building blocks of the IoT network “more equal” than others?

    “Some have argued that the holy grail of the IoT value loop resides in the data and that those in the IoT ecosystem who aggregate and transform massive amounts of raw data into commercially useful intelligence capture the real value in the IoT environment. This notion holds that commercially useful data provide insights that drive action and ultimately represent the reason that the end user pursues a smart solution in the first place. Put another way, the end customer is more apt to pay for a more comprehensive treatment of raw data than for a better sensor. Indeed, some even believe that as time passes, the gap in relative value captured by those who curate and analyze the data and the rest of the IoT ecosystem will only widen and that, on a long-term basis, players within the “non-data” part of the IoT ecosystem will need to develop some data analytics capabilities simply to differentiate themselves as something more than commodity providers. Of course, some think that the emphasis on data is overblown and argue that where the real value in the IoT ecosystem is captured depends on application. Time will tell of course. But there can be little doubt that the collection and enhancement of data is highly coveted, and analytics and the ability to make use of the vast quantities of information that is captured will serve as critical elements to virtually any IoT solution.”

I urge you to download and closely analyze the entire report. It’s one of the most thoughtful and visionary pieces of IoT theory I’ve seen (no doubt because of its roundtable origins: in keeping with the above-mentioned need for cyclical information flow for the IoT [and, IMHO, creativity in general], the more insights you can bring together on a real-time basis, the richer the outcome. Bravo!

 

comments: Comments Off on Deloitte’s IoT “Information Value Loop”: critical attitudinal shift tags: , , , , , ,
http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management