Great Podcast Discussion of #IoT Strategy With Old Friend Jason Daniels

Right after I submitted my final manuscript for The Future is Smart I had a chance to spend an hour with old friend Jason Daniels (we collaborated on a series of “21st Century Homeland Security Tips You Won’t Hear From Officials” videos back when I was a homeland security theorist) on his “Studio @ 50 Oliver” podcast.

We covered just about every topic I hit in the book, with a heavy emphasis on the attitude shifts (“IoT Essential Truths” needed to really capitalize on the IoT and the bleeding-edge concept I introduce at the end of the book, the “Circular Corporation,” with departments and individuals (even including your supply chain, distribution network and customers, if you choose) in a continuous, circular management style revolving around a shared real-time IoT hub.  Hope you’ll enjoy it!

comments: Comments Off on Great Podcast Discussion of #IoT Strategy With Old Friend Jason Daniels tags: , , , , , ,

#IoT Sensor Breakthroughs When Lives Are On the Line!

One of my unchanging principles is always to look to situations where there’s a lot at stake — especially human lives — for breakthroughs in difficult issues.

Exhibit A of this principle for the IoT is sensor design, where needing to frequently service or recharge critical sensors that detect battlefield conditions can put soldiers’ lives at stake (yes, as long-time readers know, this is particularly of interest to me because my Army officer son was wounded in Iraq).

FedTech reports encouraging research at DARPA on how to create sensors that have ultra-low power requirements, can lie dormant for long periods of time and yet are exquisitely sensitive to critical changes in conditions (such as vehicle or troop movements) that might put soldiers at risk in battlefield conditions.

The  N-ZERO (Near Zero RF and Power Operations)  program is a three-year initiative to create new, low-energy battlefield sensors, particularly for use at forward operating bases where conditions can change quickly and soldiers are constantly at risk — especially if they have to service the sensors:

“State-of-the-art military sensors rely on “active electronics” to detect vibration, light, sound or other signals for situational awareness and to inform tactical planning and action. That means the sensors constantly consume power, with much of that power spent processing what often turns out to be irrelevant data. This power consumption limits sensors’ useful lifetimes to a few weeks or months with even the best batteries and has slowed the development of new sensor technologies and capabilities. The chronic need to service or redeploy power-depleted sensors is not only costly and time-consuming but also increases warfighter exposure to danger.”

…. (the project has) the goal of developing the technological foundation for persistent, event-driven sensing capabilities in which the sensor can remain dormant, with near-zero power consumption, until awakened by an external trigger or stimulus. Examples of relevant stimuli are acoustic signatures of particular vehicle types or radio signatures of specific communications protocols. If successful, the program could extend the lifetime of remotely deployed communications and environmental sensors—also known as unattended ground sensors (UGS)—from weeks or months to years.”

A key goal is a 20-fold battery size reduction while still having the sensor last longer.

What cost-conscious pipeline operators, large ag business or “smart city” transportation director wouldn’t be interested in that kind of product as well?

According to Signal, the three-phase project is ahead of its targets. In the first part, which ended in December, the DARPA team created “zero-power receivers that can detect very weak signals — less than 70 decibel-milliwatt radio-frequency (RF) transmissions, a measure that is better than originally expected.” This is critical to the military (and would have huge benefits to business as well, since monitoring frequently must be 24/7 but reporting of background data  (vs. significant changes) would both deplete batteries while requiring processing of huge volumes of meaningless data). Accordingly, a key goal would be to create “… radio receivers that are continuously alert for friendly radio transmissions, but with near zero power consumption when transmissions are not present.” A target is  “exploitation of the energy in the signal signature itself to detect and discriminate the events of interest while rejecting noise and interference. This requires the development of passive or event-powered sensors and signal-processing circuitry. The successful development of these techniques and components could enable deployments of sensors that can remain “off” (that is, in a state that does not consume battery power), yet alert for detecting signatures of interest, resulting in greatly extended durations of operation.”

The “exploitation of .. energy in the signal signature itself sounds reminiscent of the University of Washington research I’ve reported in the past that would harness ambient back-scatter to allow battery-less wireless transmission, another key potential advance in IoT sensor networks.

The following phrases of N-ZERO will each take a year.

Let’s hope that the project is an overall success, and that the end products will also be commercialized. I’ve always felt sensor cost and power needs were potential IoT Achilles’ heels, so that would be a major boost!

comments: Comments Off on #IoT Sensor Breakthroughs When Lives Are On the Line! tags: , , , , ,

Servitization With IoT: Weird Biz-Speak, But Sound Strategy

I love it when manufacturers stop selling things — and their revenues soar!

That’s one of the things I’ll cover on May 2nd  in”Define Your Breakout IoT” strategy, (sign-up) a webinar I’m doing with Mendix. I’ll outline an incremental approach to the IoT in which you can make some early, tentative steps (such as implementing Augury’s hand-held vibration sensor as a way to start predictive maintenance) and then, as you gain experience and increase savings and efficiency, plow the savings back into more dramatic transformation.

One example of the latter that I’ll detail in the webinar is one of my four “Essential Truths” of the IoT: rethink products. By that I meant not only reinventing products to be smart (especially by building in sensors so they can report their real-time status 24/7), but, having done that, exploring new ways to market them.  Or, as one graphic I’ll use in the presentation puts it, in mangled biz-speak, “servitization.”

              Hortilux bulbs

Most of the examples I’ve written about in that regard have been from major businesses, such as GE and Rolls-Royce jet turbines, that are now leased as services (with the price determined by thrust generated), but Mendix has a smaller, niche client that also successfully made the conversion: Hortilux, a manufacturer of grow lights for greenhouses.

The Hortilux decided to differentiate itself in an increasingly competitive grow light market by evolving from simply selling bulbs to instead providing a comprehensive continuing service that helps its customers optimize availability and lifetime of grow light systems, while cut energy cost.     

Using Mendix tools, they created Hortisensehttp://www.hortidaily.com/article/31774/Hortilux-launches-Hortisense-software-suite, a digital platform that monitors and safeguards various grow light processes in the greenhouse using sensors and PLCs. Software applications interpret the data and present valuable information to the grower anytime, anywhere, and on any device.

With Mendix, Hortilux created an application to collect sensor data on light, temperature, soil, weather and more. Now users can optimize plants’ photosynthesis, energy consumption, and greenhouse maintenance. Most ambitiously, it provides comprehensive “crop yield management:” 

  • Digital cultivation schedule
  • Light strategies based on plant physiology and life cycle
  • Automatic light adjustment based on predictive analytics (e.g. weather forecast, energy prices, produce prices)

The app even allows predictive maintenance, predicting bulbs’ life expectancy and notifying maintenance to replace them in time to avoid disruptions in operations.

In the days when we suffered from what I call “Collective Blindness,” when we lacked the tools to “see” inside products to m0nitor and perhaps fix them based on real-time operating data, it made sense to sell products and provide hit-or-miss maintenance when they broke down.

Now that we can monitor them 24/7 and get early enough warning to instead provide predictive maintenance, it makes equal sense to switching to marketing them as services, with mutual benefits including:

  • increased customer satisfaction because of less down-time
  • new revenues from selling customers services based on availability of the real-time data, which in turn allows them more operating precision
  • increased customer loyalty, because the customer is less likely to actually go on the open market and buy a competing product
  • the opportunity to improve operations through software upgrades to the product.

Servitization: ugly word, but smart strategy. Hope you’ll join us on the 2nd!

comments: Comments Off on Servitization With IoT: Weird Biz-Speak, But Sound Strategy tags: , , , , , ,

Surprising Benefits of Combining IoT and Blockchain (they go beyond economic ones!)

One final effort to work this blockchain obsession out of my system so I can get on to some exciting other IoT news!

I couldn’t resist summarizing for you the key points in”Blockchain: the solution for transparency in product supply chains,” a white paper from Project Provenance Ltd., a London-based collective  (“Our common goal is to deliver meaningful change to commerce through open and accessible information about products and supply chains.”).

If you’ve followed any of the controversies over products such as “blood diamonds” or fish caught by Asian slaves & sold by US supermarkets, you know supply chains are not only an economic issue but also sometimes a vital social (and sometimes environmental) one. As the white paper warns:

“The choices we make in the marketplace determine which business practices thrive. From a diamond in a mine to a tree in a forest, it is the deepest darkest ends of supply chains that damage so much of the planet and its livelihood.”

Yikes!

Now blockchain can make doing the right thing easier and more profitable:

“Provenance enables every physical product to come with a digital ‘passport’ that proves authenticity (Is this product what it claims to be?) and origin (Where does this product come from?), creating an auditable record of the journey behind all physical products. The potential benefits for businesses, as well as for society and the environment, are hard to overstate: preventing the selling of fake goods, as well as the problem of ‘double spending’ of certifications present in current systems. The Decentralized Application (Dapp) proposed in this paper is still in development and we welcome businesses and standards organizations to join our consortium and collaborate on this new approach to understanding our material world.”

I also love Provenance’s work with blockchain because it demonstrates one of my IoT “Essential Truths,” namely, that we must share data rather than hoard it.  The exact same real-time data that can help streamline the supply chain to get fish to our stores quicker and with less waste can also mean that the people catching it are treated fairly. How cool is that?  Or, as Benjamin Herzberg, Program Lead, Private Sector Engagement for Good Governance at the World Bank Institute puts it in the quote that begins the paper, Now, in the hyper-connected and ever-evolving world, transparency is the new power.

While I won’t summarize the entire paper, I do recommend that you so, especially if blockchain is still new to you, because it gives a very detailed explanation of each blockchain component.

Instead, let’s jump in with the economic benefits of a blockchain and IoT-enabled supply chain, since most companies won’t consider it, no matter what the social benefits, if it doesn’t help the bottom line. The list is long, and impressive:

  • “Interoperable: A modular, interoperable platform that eliminates the possibility of double spending
  • Auditable: An auditable record that can be inspected and used by companies, standards organizations, regulators, and customers alike
  • Cost-efficient:  A solution to drastically reduce costs by eliminating the need for ‘handling companies’ to be audited
  • Real-time and agile:  A fast and highly accessible sign-up means quick deployment
  • Public: The openness of the platform enables innovation and could achieve bottom-up transparency in supply chains instead of burdensome top-down audits
  • Guaranteed continuity:  The elimination of any central operator ensures inclusiveness and longevity” (my emphasis)

Applying it to a specific need, such as documenting that a food that claims to be organic really is, blockchain is much more efficient and economical than cumbersome current systems, which usually rely on some third party monitoring and observing the process.  As I’ve mentioned before, the exquisite paradox of blockchain-based systems is that they are secure and trustworthy specifically because no one individual or program controls them: it’s done through a distributed system where all the players may, in fact, distrust each other:

“The blockchain removes the need for a trusted central organization that operates and maintains this system. Using blockchains as a shared and secure platform, we are able to see not only the final state (which mimics the real world in assigning the materials for a given product under the ownership of the final customer), but crucially, we are able to overcome the weaknesses of current systems by allowing one to securely audit all transactions that brought this state of being into effect; i.e., to inspect the uninterrupted chain of custody from the raw materials to the end sale.

“The blockchain also gives us an unprecedented level of certainty over the fidelity of the information. We can be sure that all transfers of ownership were explicitly authorized by their relevant controllers without having to trust the behavior or competence of an incumbent processor. Interested parties may also audit the production and manufacturing avatars and verify that their “on-chain” persona accurately reflects reality.”

The white paper concludes by also citing an additional benefit that I’ve mentioned before: facilitating the switch to an environmentally-sound “circular economy,” which requires not only tracking the creation of things, but also their usage, trying to keep them out of landfills. “The system proposed in this paper would not only allow the creation (including all materials, grades, processes etc) and lifecycle (use, maintenance etc) to be logged on the blockchain, but this would also make it easy to access this information when products are returned to be assessed and remanufactured into a new item.”

Please do read the whole report, and think how the economic benefits of applying blockchain-enabled IoT practices to your supply chain can also warm your heart.

 

comments: Comments Off on Surprising Benefits of Combining IoT and Blockchain (they go beyond economic ones!) tags: , , , , , , ,

Libelium: flexibility a key strategy for IoT startups

I’ve been fixated recently on venerable manufacturing firms such as 169-yr. old Siemens making the IoT switch.  Time to switch focus, and look at one of my fav pure-play IoT firms, Libelium.  I think Libelium proves that smart IoT firms must, above all, remain nimble and flexible,  by three interdependent strategies:

  • avoiding picking winners among communications protocols and other standards.
  • avoiding over-specialization.
  • partnering instead of going it alone.
Libelium CEO Alicia Asin

Libelium CEO Alicia Asin

If you aren’t familiar with Libelium, it’s a Spanish company that recently turned 10 (my, how time flies!) in a category littered with failures that had interesting concepts but didn’t survive. Bright, young, CEO Alicia Asin, one of my favorite IoT thought leaders (and do-ers!) was recently named best manager of the year in the Aragón region in Spain.  I sat down with her for a wide-ranging discussion when she recently visited the Hub of the Universe.

I’ve loved the company since its inception, particularly because it is active in so many sectors of the IoT, including logistics, industrial control, smart meters, home automation and a couple of my most favorite, agriculture (I have a weak spot for anything that combines “IoT” AND “precision”!) and smart cities.  I asked Asin why the company hadn’t picked one of those verticals as its sole focus: “it was too risky to choose one market. That’s still the same: the IoT is still so fragmented in various verticals.”

The best illustration of the company’s strategy in action is its Waspmote sensor platform, which it calls the “most complete Internet of Things platform in the market with worldwide certifications.” It can monitor up to 120 sensors to cover hundreds of IoT applications in the wide range of markets Libelium serves with this diversified strategy, ranging from the environment to “smart” parking.  The new versions of their sensors include actuators, to not simply report data, but also allow M2M control of devices such as irrigation valves, thermostats, illumination systems, motors and PLC’s. Equally important, because of the potentially high cost of having to replace the sensors, the new ones use extremely little power, so they can last        .

Equally important as the company’s refusal to limit itself to a single vertical market is its commitment to open systems and multiple communications protocols, including LoRaWAN, SIGFOX, ZigBee and 4G — a total of 16 radio technologies. It also provides both open source SDK and APIs.

Why?  As Asin told me:

 

“There is not going to be a standard. This (competiting standards and technology) is the new normal.

“I talk to some cities that want to become involved in smart cities, and they say we want to start working on this but we want to use the protocol that will be the winner.

“No one knows what will be the winner.

“We use things that are resilient. We install all the agents — if you aren’t happy with one, you just open the interface and change it. You don’t have to uninstall anything. What if one of these companies increases their prices to heaven, or you are not happy with the coverage, or the company disappears? We allow you to have all your options open.

“The problem is that this (not picking a standard) is a new message, and people don’t like to listen.  This is how we interpret the future.”

Libelium makes 110 different plug and play sensors (or as they call them, “Plug and Sense,” to detect a wide range of data from sources including gases, events, parking, energy use, agriculture, and water.  They claim the lowest power consumption in the industry, leading to longer life and lower maintenance and operating costs.

Finally, the company doesn’t try to do everything itself: Libelium has a large and growing partner network (or ecosystem, as it calls it — music to the ears of someone who believes in looking to nature for profitable business inspiration). Carrying the collaboration theme even farther, they’ve created an “IoT Marketplace,” where pre-assembled device combinations from Libelium and partners can be purchased to meet the specific needs of niches such as e-health,  vineyards, water quality, smart factories, and smart parking.  As the company says, “the lack of integrated solutions from hardware to application level is a barrier for fast adoption,” and the kits take away that barrier.

I can’t stress it enough: for IoT startups that aren’t totally focused on a single niche (a high-stakes strategy), Libelium offers a great model because of its flexibility, agnostic view of standards, diversification among a variety of niches, and eagerness to collaborate with other vendors.


BTW: Asin is particularly proud of the company’s newest offering, My Signals,which debuted in October and has already won several awards.  She told me that they hope the device will allow delivering Tier 1 medical care to billions of underserved people worldwide who live in rural areas with little access to hospitals.  It combines 15 different sensors measuring the most important body parameters that would ordinarily be measured in a hospital, including ECG, glucose, airflow, pulse, oxygen in

It combines 15 different sensors measuring the most important body parameters that would ordinarily be measured in a hospital, including ECG, glucose, airflow, pulse, blood oxygen, and blood pressure. The data is encrypted and sent to the Libelium Cloud in real-time to be visualized on the user’s private account.

It fits in a small suitcase and costs less than 1/100th the amount of a traditional Emergency Observation Unit.

The kit was created to make it possible for m-health developers to create prototypes cheaply and quickly.

comments: Comments Off on Libelium: flexibility a key strategy for IoT startups tags: , , , , , , ,

2nd day liveblogging, Gartner ITxpo, Barcelona

Accelerating Digital Business Transformation With IoT Saptarshi Routh Angelo Marotta
(arrived late, mea culpa)

  • case study (didn’t mention name, but just moved headquarters to Boston. Hmmmmm).
  • you will be disrupted by IoT.
  • market fragmented now.

Toshiba: How is IoT Redefining Relationships Between Customers and Suppliers, Damien Jaume, president, Toshiba Client Solutions, Europe:

  • time of tremendous transformation
  • by end of ’17, will surpass PC, tabled & phone market combined
  • 30 billion connect  devices by 2020
  • health care IoT will be $117 billion by 2020
  • 38% of indiustry leaders disrupted by digitally-enabled competitors by 2018
  • certainty of customer-supplier relationship disruption will be greatest in manufacturing, but also every other market
    • farming: from product procurement to systems within systems. Smart, connected product will yield to integrated systems of systems.
  • not selling product, but how to feed into whole IoT ecosystem
  • security paramount on every level
  • risk to suppliers from new entrants w/ lean start-up costs.
  • transition from low engagement, low trust to high engagement, high trust.
  • Improving efficiencies
  • ELIMINATE MIDDLEMAN — NO LONGER RELEVANT
  • 4 critical success factors:
    • real-time performance pre-requisite
    • robustness — no downtime
    • scalability
    • security
  • case studies: energy & connected home, insurance & health & social care (Neil Bramley, business unit director for clients solutions
    • increase depth of engagement with customer. Tailored information
    • real-time performance is key, esp. in energy & health
    • 20 million smart homes underway in GB by 2020:
      • digitally empowering consumers
      • engaging consumers
      • Transforming relationships among all players
      • Transforming homes
      • Digital readiness
    • car insurance: real-time telematics.
      • real-time telematics data
      • fleet management: training to reduce accidents. Working  w/ Sompo Japan car insurance:
    • Birmingham NHS Trust for health (Ciaron Hoye, head of digital) :
      • move to health promotion paradigm
      • pro-actively treat patients
      • security first
      • asynchronous communications to “nudge” behavior.
      • avoiding hip fractures
      • changing relationship w/ the patient: making them stakeholders, involving in discussion, strategy
      • use game theory to change relationship

One-on-one w/ Christian Steenstrup, Gartner IoT analyst. ABSOLUTE VISIONARY — I’LL BE INTERVIEWING HIM AT LENGTH IN FUTURE:

  • industrial emphasis
  • applications more ROI driven, tangible benefits
  • case study: mining & heavy industry
    • mining in Australia, automating entire value train. Driverless. Driverless trains. Sensors. Caterpillar. Collateral benefits: 10% increase in productivity. Less payroll.  Lower maintenance. Less damage means less repairs.
    • he downplays AR in industrial setting: walking in industrial setting with lithium battery strapped to your head is dangerous.
    • big benefit: less capital expense when they build next mine. For example, building the town for the operators — so eliminate the town!
  • take existing processes & small improvements, but IoT-centric biz, eliminating people, might eliminate people. Such as a human-less warehouse. No more pumping huge amount of air underground. Huge reduction with new system.  Mine of future: smaller holes. Possibility  of under-sea mining.
  • mining has only had incremental change.
  • BHP mining’s railroad — Western Australia. No one else is involved. “Massive experiment.”
  • Sound sensing can be important in industrial maintenance.  All sorts of real-time info. 
  • Digital twins: must give complete info — 1 thing missing & it doesn’t work.
  • Future: 3rd party data brokers for equipment data.
  • Privacy rights of equipment.
  • “communism model” of info sharing — twist on Lenin.

 

Accelerating Digital Transformation with Microsoft Azure IoT Suite (Charlie Lagervik):

  • value networking approach
  • customer at center of everything: customer conversation
  • 4 imperatives:
    • engage customers
    • transform products
    • empower employees
    • optmize operations
  • their def. of IoT combines things/connectivity/data/analytics/action  Need feedback loop for change
  • they focus on B2B because of efficiency gains.
  • Problems: difficult to maintain security, time-consuming to launch, incompatible with current infrastructure, and hard to scale.
  • Azure built on cloud.
  • InternetofYourThings.com

 

Afternoon panel on “IoT of Moving Things” starts with all sorts of incredible factoids (“since Aug., Singapore residents have had access to self=driving taxis”/ “By 2030, owning a car will be an expensive self-indulgence and will no longer be legal.”

  • vehicles now have broader range of connectivity now
  • do we really want others to know where we are? — privacy again!
  • who owns the data?
  • what challenges do we need to overcome to turn data into information & valuable insight that will help network and city operators maximize efficiency & drive improvement across our transportation network?
  • think of evolution: now car will be software driven, then will become living room or office.
  • data is still just data, needs context & location gives context.
  • cities have to re-engineer streets to become intelligent streets.
  • must create trust among those who aren’t IT saavy.
  • do we need to invest in physical infrastructure, or will it all be digital?
  • case study: one car company w/ engine failures in 1 of 3 cars gave the consultants data to decide on what was the problem.
comments: Comments Off on 2nd day liveblogging, Gartner ITxpo, Barcelona tags: , , , , ,

Brexit and the IoT: Let’s Capitalize on the Opportunity, Not Wallow in Despair

Wow: as the old Dinah Washington ditty went, “What a Difference a Day Makes.” Since last Thursday, I doubt even the most diehard IoT zealots have thought about anything but Brexit and its implications.  Now that we’ve had a little time to reflect and digest exactly how dire the possible problems are, I’d like to suggest we look at the bright side, and think the IoT could play a major role in improving everyone’s life in the future — not just the economic elites.

Wei ji: crisis combines danger and opportunity

Wei ji: crisis combines danger and opportunity

I used to be a corporate crisis manager, called in when major corporations had done amazingly stupid things and their reputations and sometimes even their survival was in question. For those occasions, I kept a battered greeting card in my briefcase with the calligraphy for wei ji, the Chinese ideogram for crisis. I’d point out that it c0mbined danger — that was obvious! — with the less-obvious one for opportunity. I still believe that, even in the global confusion and concern resulting from Brexit, and I think there’s a role for the IoT in the new world order.

Above all, this should be a wake-up call for the global economic and political elites that, going forth, change must benefit everyone, not just them.

When it comes to the IoT, that means that it can’t be yet another excuse for automating jobs out of existence, but must instead be a way of empowering workers and creating new opportunities:

  • One that occurred to me is near & dear to my heart, because I thought of a primitive version 25 years ago: creating 30″ high 4′ x 8′ garden “boxes” planted using Mel Bartholomew’s “Square Foot Gardening” methods, that would allow people worldwide to grow their own veggies in very small spaces.  Add in IoT water sensors so that the beds could be watered precisely when and in the amount needed, and people everywhere could become self-sufficient (e-mail me if you’re interested in commercializing the approach)!  It would be the cheapie’s variation on the neat, but costly, Grove Labs home ag solution.
  • smart asthma inhaler

    smart asthma inhaler

    Increasingly, global populations will be centered in cities, so the whole smart cities approach will improve everyone’s quality of living by cutting down traffic, reducing municipal operating costs, and improving public health. Even fat cats get upset when their limos are stuck in traffic, so this is a win-win.
    One of my favorite examples of the smart city approach is the asthma inhaler cum GPS that automatically alerts public health authorities when a user — most frequently, sadly, a low-come minority person — uses the inhaler, allowing them to identify dirty air “hot spots” where cleanup efforts need to be focused.

  • I’ve always been impressed about the outside-the-box mobile device apps coming out of Africa that make their lack of conventional infrastructure into an advantage. One of the coolest examples of that when it comes to the IoT is the example INEX’s Chris Rezendes told me about: how Grundfos, the world’s leading pump company, releases the data from senors on its pumps for village water supplies in Africa and some smart guys have come up with an app that allows the village women to check in advance whether the village well is working before they trudge miles to get the watch (which, BTW, I hope they’re carrying back in these way-cool appropriate technology rolling water carriers, the “Hippo”).

  • Also, the IoT could empower assembly-line workers and others if smart managers realize that they too should be among those sharing real-time IoT data: yes, a lot of IoT data can be used on a M2M basis so one machine’s status will regulate another’s, but there’s also a potential role for workers, with their years of experience and horse-sense, using that data to fine-tune processes themselves to optimize efficiency. Artificial Intelligence is great, but I still think there’s a role for enlightened humans, even if they don’t have a lot of education and prestige within the corporation.

Those are just a few ideas on how the IoT might be used to improve everyone’s lot in the coming years and undermine the current status quo that benefits only a few.  Let me know if you have ideas on how to foster this revolution and make Brexit the catalyst for positive change.

 

 

comments: Comments Off on Brexit and the IoT: Let’s Capitalize on the Opportunity, Not Wallow in Despair tags: , , , , , , ,

Connected Cow: another thing you couldn’t do until IoT

Posted on 2nd May 2016 in agriculture, Internet of Things

I love IoT apps and devices that allow us to increase the efficiency of existing products and services, but long-time readers may remember that I have a special fond spot for “what can you do now that you couldn’t do before” when it comes to the IoT. These are things such as the Toronto Hospital for Sick Children collaboration that allows treating preemies for infections a full day before any symptoms, or the way Tesla did a recall without anyone having to come to a dealer. More often than not, the

More often than not, they stem from the fact that the IoT for the first time allows us to cure what I call “Collective Blindness,” and learn about the inner workings of things that were simply impossible to observe in the past.

Here’s a new one in that category: Fujitsu’s “Connected Cow” technology.  Like the IBM researchers and docs who found that preemies’ heartbeats changed when they were developing the infection, ranchers observing data from cows wearing pedometers realized that the cows’ took more steps when they were in heat, allowing them to time artificial insemination for the precise time when the cows ovulated, resulting in higher fertilization rates. The “step count data [is sent] via the internet, analyzed in the cloud, and generates an email alert when there are signs of increased stepping.” It may be possible in the future to use the system to choose the calves gender.

It’s in use in Japan and South Korea, and is being tested in Poland, Turkey and Roumania.

 

 

 

comments: Comments Off on Connected Cow: another thing you couldn’t do until IoT tags: , , ,

Internet of Things Can Pay Off for Small & Medium Businesses Too

Think again, if you’re a small and medium-sized business (SMB) that is holding back on Internet of Things projects until the price of software and components such as sensors came down and the technology is more robust!

INEX Advisors’ IoT Impact LABS, an accelerator program in New Bedford, MA brings together IoT startups, top technology and industrial suppliers such as Analog Devices, Dell, and PTC/ ThingWORX, plus legal and policy experts to use the IoT help innovative, sustainable small and medium-sized businesses in the region in fields such as “smart cities,” food and agriculture, water and maritime, and energy and transportation.

One is particularly noteworthy because it is bringing fishing into the 21st century.

Island Creek Oysters of Duxbury MA, was plagued by the need to do a five-step, paper-based food safety inspection reporting on variables such as water temperature and pH, that had to be recorded precisely during the two-hour window after low tide when it had to harvest the oysters.  It’s difficult to do both.

The Mass. Department of Fisheries Management brought together INEX and Island Creek to develop a real-time digital program to both monitor the oysters and do the data collection. Chris Rezendes, partner at Inex Advisors, said the department contacted IoT Impact Labs to figure out a digital traceability program for shellfish farmers in Massachusetts, which includes Island Creek’s farm in Duxbury Mass., just a half-hour south of Boston.

IoT Impact Labs put together a solution to enable monitoring of conditions in real time, wirelessly.

“There are just dozens of instrumentation opportunities. That means dozens of opportunities for sensors, and firmware, and connectivity, and analytics vendors,” Rezendes told CRN.

The project included replacing time-consuming human monitoring of more than 60 water pumps with wireless sensors.

The LABS will release more information about the other projects in coming months, and will host one of our Boston/New England IoT Meetups on February 29 in New Bedford (6 PM, 1213 Purchase Street), with speakers including:

  • Dave Wiley, PhD. NOAA, Research Director, Stellwagon National Marine Sanctuary. He has led the development and deployment of sensor buoys and marine mammal tracking, including supporting a recreational marine application based on his team’s work.
  • Dave Duquette, Founder and CEO, Littoral Power Systems which recently closed its Seed Round, including a prestigious ARPA-E grant. Their kinetic energy harvesting systems are breaking ground in tidal energy capture.
  • Brian Coffey, environmental sensing and instrumentation lead at Analog Devices.

 

comments: Comments Off on Internet of Things Can Pay Off for Small & Medium Businesses Too tags: , , , ,

Why Global Warming Must Be IoT Focus for Everyone

Thanksgiving 2015I want to offer you six great reasons — five of them are seated with my wife and me in this photo — why we all should make global warming a primary focus of IoT projects for the foreseeable future.

There simply is no way to sugar-coat the grim news coming out of the Paris climate talks: even with the most dramatic limits that might be negotiated there, scientists warn we will fall short of the limits in temperature rises needed to avoid global devastation for my grandchildren — and yours.

Fortunately, the Internet of Things can and must be the centerpiece of the drastic changes that we will have to make collectively and individually to cope with this challenge:

“Perhaps one of the most ambitious projects that employ big data to study the environment is Microsoft’s Madingley, which is being developed with the intention of creating a simulation of all life on Earth. The project already provides a working simulation of the global carbon cycle, and it is hoped that, eventually, everything from deforestation to animal migration, pollution, and overfishing will be modeled in a real-time “virtual biosphere.” Just a few years ago, the idea of a simulation of the entire planet’s ecosphere would have seemed like ridiculous, pie-in-the-sky thinking. But today it’s something into which one of the world’s biggest companies is pouring serious money.”

Let me leave you with a laundry list of potential IoT uses to reduce global warming compiled by Cisco’s Dr. Rick Huijbregts:

  • Urban mobility “apps” predict how we can move from A to B in a city in the most environmental friendly manner. Real time data is collected from all modes of city transportation.
  • Using solar energy to power IT networks that in turn power heating, cooling and lighting. Consequently, reduce AC/DC conversions and avoid 70% electricity loss.
  • IP­based, and POE (Power of Ethernet) LED lighting in buildings reduced energy by 50% because of LED and another 50% because of control and automation.
  • Sensors (Internet of Things) record environmental highs and lows, as well as energy consumption. Data analytics allow us to respond in real­time and curtail consumption.
  • Real time insight in energy behaviour and consumption can turn into actionable reduction. 10% of energy reduction can be achieved by behavioural change triggered by simple awareness and education.
  • Working from home while being connected as if one were in the office (TelePresence, Cisco Spark, WebEx, just to name a few networked collaboration tools) takes cars off the road.
  • Grid modernization by adding communication networks to the electrical grid to allow for capacity and demand management.
  • Planning, optimizing, and redirecting transportation logistics based on algorithms, real­time weather and traffic data, and streamlined and JIT shipment and delivery schedules.

These are all great challenges and offer the potential for highly profitable IoT solutions.  For the sake of my six grandchildren, let’s get going!

http://www.stephensonstrategies.com/">Stephenson blogs on Internet of Things Internet of Things strategy, breakthroughs and management